题目内容
【题目】2020年开始,国家逐步推行全新的高考制度,新高考不再分文理科。某省采用模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某学校从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.
(1)学校计划在高一上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如下表是根据调查结果得到的列联表.请求出和,并判断是否有的把握认为选择科目与性别有关?说明你的理由;
选择“物理” | 选择“历史” | 总计 | |
男生 | 10 | ||
女生 | 25 | ||
总计 |
(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“历史”的人数为,求的分布列及数学期望.
参考公式:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1),,有的把握认为选择科目与性别有关.详见解析(2)见解析
【解析】
(1)完善列联表,计算,再与临界值表进行比较得到答案.
(2)这4名女生中选择历史的人数可为0,1,2,3,4.分别计算对应概率,得到分布列,再计算数学期望.
(1)由题意,男生人数为,
女生人数为,
所以列联表为:
选择“物理” | 选择“历史” | 总计 | |
男生 | 45 | 10 | 55 |
女生 | 25 | 20 | 45 |
总计 | 70 | 30 | 100 |
,.
假设:选择科目与性别无关,所以的观测值
查表可得:,所以有的把握认为选择科目与性别有关.
(2)从45名女生中分层抽样抽9名女生,所以这9名女生中有5人选择物理,4人选择历史,9名女生中再选择4名女生,则这4名女生中选择历史的人数可为0,1,2,3,4.设事件发生概率为,则
,,,
,.
所以的分布列为:
0 | 1 | 2 | 3 | 4 | |
所以的数学期望.
【题目】某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意程度进行调查,并随机抽取了其中30名员工(16名女工,14名男工)的得分,如下表:
女 | 47 | 36 | 32 | 48 | 34 | 44 | 43 | 47 | 46 | 41 | 43 | 42 | 50 | 43 | 35 | 49 |
男 | 37 | 35 | 34 | 43 | 46 | 36 | 38 | 40 | 39 | 32 | 48 | 33 | 40 | 34 |
(1)根据以上数据,估计该企业得分大于45分的员工人数;
(2)现用计算器求得这30名员工的平均得分为40.5分,若规定大于平局得分为 “满意”,否则为 “不满意”,请完成下列表格:
“满意”的人数 | “不满意”的人数 | 合计 | |
女员工 | 16 | ||
男员工 | 14 | ||
合计 | 30 |
(3)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?
参考数据:
P(K2K) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
K | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |