题目内容

15.设△ABC的内角A、B、C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为(  )
A.锐角三角形B.钝角三角形C.直角三角形D.等腰直角三角形

分析 根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得sinA的值进而求得A,判断出三角形的形状

解答 解:∵bcosC+ccosB=asinA,
∴sinBcosC+sinCcosB=sin(B+C)=sinA=sin2A,
∵sinA≠0,
∴sinA=1,A=$\frac{π}{2}$,
故三角形为直角三角形,
故选:C.

点评 本题主要考查了正弦定理的应用.解题的关键时利用正弦定理把等式中的边转化为角的正弦,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网