题目内容
设函数f(x)满足f(n+1)=(n∈N*)且f(1)=2,求f(20)的值.
解:∵f(n+1)==f(n)+
∴f(n)=f(n-1)+;
f(n-1)=f(n-2)+;
…
f(3)=f(2)+1;
f(2)=f(1)+;
又∵f(1)=2,
∴f(n)=2++1+…+=
∴f(20)==97
分析:由已知中函数f(x)满足f(n+1)=(n∈N*)且f(1)=2,我们可依次得到f(n)=f(n-1)+;f(n-1)=f(n-2)+;…f(2)=f(1)+;结合f(1)=2,利用累加法,我们易求出函数f(n)(n∈N*)的表达式,将n=20代入即可得到f(20)的值.
点评:本题考查的知识点是数列递推式,数列的函数特征,其中由已知条件,结合累加法,得到函数f(n)(n∈N*)的表达式,是解答本题的关键.
∴f(n)=f(n-1)+;
f(n-1)=f(n-2)+;
…
f(3)=f(2)+1;
f(2)=f(1)+;
又∵f(1)=2,
∴f(n)=2++1+…+=
∴f(20)==97
分析:由已知中函数f(x)满足f(n+1)=(n∈N*)且f(1)=2,我们可依次得到f(n)=f(n-1)+;f(n-1)=f(n-2)+;…f(2)=f(1)+;结合f(1)=2,利用累加法,我们易求出函数f(n)(n∈N*)的表达式,将n=20代入即可得到f(20)的值.
点评:本题考查的知识点是数列递推式,数列的函数特征,其中由已知条件,结合累加法,得到函数f(n)(n∈N*)的表达式,是解答本题的关键.
练习册系列答案
相关题目
已知定义在R上的函数f(x)满足:对任意x∈R,都有f(x)=f(2-x)成立,且当x∈(-∞,1)时,(x-1)f′(x)<0(其中f'(x)为f(x)的导数).设a=f(0),b=f(
),c=f(3),则a、b、c三者的大小关系是( )
1 |
2 |
A、a<b<c |
B、c<a<b |
C、c<b<a |
D、b<c<a |
设函数f(x)满足f(n+1)=
(n∈N*),且f(1)=2,则f(20)为( )
2f(n)+n |
2 |
A、95 | B、97 |
C、105 | D、192 |