题目内容
在正三棱锥
(顶点在底面的射影是底面正三角形的中心)中,
,过
作与
分别交于
和
的截面,则截面![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700237324.png)
的周长的最小值是 ( )
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185659754535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185659925693.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185659941302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700159522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700175323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700206322.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700237324.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700284491.png)
A.9 | B.10 | C.11 | D.12 |
C
分析:利用正三棱锥P-ABC的侧面展开图,即可将求△ADE的周长的最小值问题转化为求展开图中线段的长的问题,进而在三角形中利用解三角形的知识计算即可
解答:解:此正三棱锥的侧面展开图如图:则△ADE的周长为AD+DE+EA′,由于两点之间线段最短,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318570048717777.png)
∴当D、E处于如图位置时,截面△ADE的周长最小,即为AA′的长
设∠APB=α,过P作PO⊥AA′,则O为AA′中点,∠APO=
,
在等腰三角形PAB中,sin
=
=
,cos
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700612454.png)
∴cosα=1-2sin2
=
,sinα=2sin
?cos
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700815498.png)
∴sin
=sin(α+
)=sinαcos
+cosαsin
=
×
+
×
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185701251377.png)
∴AA′=2AO=2AP×sin
=16×
=11
故选C
解答:解:此正三棱锥的侧面展开图如图:则△ADE的周长为AD+DE+EA′,由于两点之间线段最短,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318570048717777.png)
∴当D、E处于如图位置时,截面△ADE的周长最小,即为AA′的长
设∠APB=α,过P作PO⊥AA′,则O为AA′中点,∠APO=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700503502.png)
在等腰三角形PAB中,sin
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700518431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700549419.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700565303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700518431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700612454.png)
∴cosα=1-2sin2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700518431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700674392.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700518431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700518431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700815498.png)
∴sin
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700503502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700518431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700518431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700518431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700815498.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700612454.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700674392.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700565303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185701251377.png)
∴AA′=2AO=2AP×sin
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185700503502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185701251377.png)
故选C
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目