题目内容
数列的前n项和=
解析
用火柴棒按图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数an与所搭三角形的个数n之间的关系式可以是 .
已知数列的通项公式,则 .
《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一。书中有一道这样的题目:把100个面包分给五人,使每人成等差数列,且使最大的三份之和的是较小的两份之和,则最小1份的大小是
公差不为零的等差数列的第二、三及第六项构成等比数列,则= .
在数列{an}中,a1=2,an+1=an+n,则a100= .
(本小题10分,计入总分)已知数列满足: ⑴求; ⑵当时,求与的关系式,并求数列中偶数项的通项公式;⑶求数列前100项中所有奇数项的和.
数列中, 某三角形三边之比为,则该三角形最大角为
数列的前项和则它的通项公式是__________