题目内容

《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一。书中有一道这样的题目:把100个面包分给五人,使每人成等差数列,且使最大的三份之和的是较小的两份之和,则最小1份的大小是       

解析试题分析:设五个人所分得的面包为a-2d,a-d,a,a+d,a+2d,(其中d>0);
则,(a-2d)+(a-d)+a+(a+d)+(a+2d)=5a=100,∴a=20;
(a+a+d+a+2d)=a-2d+a-d,得3a+3d=7(2a-3d);∴24d=11a,∴d=
所以,最小的1分为a-2d=20-,故答案为
考点:本题主要考查了等差数列模型的实际应用,解题时应巧设数列的中间项,从而容易得出结果
点评:解决该试题的关键是设五个人所分得的面包为a-2d,a-d,a,a+d,a+2d,(d>0);则由五个人的面包和为100,得a的值;由较大的三份之和的是较小的两份之和,得d的值;从而得最小的1分a-2d的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网