题目内容

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知
(1)求角B的大小;
(2)若b= ,a+c=3,求△ABC的面积.

【答案】
(1)解:△ABC中,∵

=

∴ac+c2=b2﹣a2

∴c2+a2﹣b2=﹣ac,

∴cosB= =﹣ =﹣

∴B=


(2)解:∵b= ,a+c=3,

∴b2=a2+c2﹣2accosB=a2+c2﹣2accos =(a+c)2﹣ac=9﹣ac=8,

∴ac=1;

∴△ABC的面积为S= acsin = ×1× =


【解析】(1)根据正弦定理化 ,再根据余弦定理求出B的值;(2)利用余弦定理求出ac的值,再求△ABC的面积.
【考点精析】认真审题,首先需要了解正弦定理的定义(正弦定理:),还要掌握余弦定理的定义(余弦定理:;;)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网