题目内容

14.已知△ABC中的三个内角角A,B,C所对的边分别为a,b,c,cosC=$\frac{sinC+2sinB}{2sinA}$.
(1)求角A的大小;
(2)若S△ABC=$\sqrt{3}$,sinB+sinC=1,求边b+c的值.

分析 (1)由正弦定理结合余弦定理化简已知等式可得b2+c2-a2=-bc,利用余弦定理可求cosA,结合范围0<A<π,可得A.
(2)由sinB+sinC=sin(B+$\frac{π}{3}$)=1,可解得:B=$\frac{π}{6}$=C,即b=c,由S△ABC=$\frac{1}{2}bcsinA$=$\sqrt{3}$,解得:bc=4,从而解得b=c=2,即可得解.

解答 解:(1)∵由正弦定理可得:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R$,
∴结合余弦定理可得:cosC=$\frac{sinC+2sinB}{2sinA}$=$\frac{c+2b}{2a}$=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,整理可得:b2+c2-a2=-bc,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{-bc}{2bc}$=-$\frac{1}{2}$,
∴由0<A<π,可得:A=$\frac{2π}{3}$.
(2)∵由(1)可得A=$\frac{2π}{3}$,
∴sinB+sinC=sinB+sin($\frac{π}{3}$-B)=$\frac{\sqrt{3}}{2}cosB+\frac{1}{2}sinB$=sin(B+$\frac{π}{3}$)=1,
∴解得:B=$\frac{π}{6}$=C,
∴解得b=c,
∵S△ABC=$\frac{1}{2}bcsinA$=$\frac{1}{2}$bc×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,解得:bc=4,
∴可解得:b=c=2,故可得:b+c=4.

点评 本题主要考查正弦定理,余弦定理,三角函数恒等变换的应用,考查了三角形面积公式的应用,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网