题目内容
9、设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0.且g(3)=0.则不等式f(x)g(x)<0的解集是( )
分析:先根据f′(x)g(x)+f(x)g′(x)>0可确定[f(x)g(x)]'>0,进而可得到f(x)g(x)在x<0时递增,结合函数f(x)与g(x)的奇偶性可确定f(x)g(x)在x>0时也是增函数,最后根据g(3)=0可求得答案.
解答:解因 f′(x)g(x)+f(x)g′(x)>0,即[f(x)g(x)]'>0
故f(x)g(x)在x<0时递增,
又∵f(x),g(x)分别是定义R上的奇函数和偶函数,
∴f(x)g(x)为奇函数,关于原点对称,所以f(x)g(x)在x>0时也是增函数.
∵f(3)g(3)=0,∴f(-3)g(-3)=0
所以f(x)g(x)<0的解集为:x<-3或0<x<3
故选D.
故f(x)g(x)在x<0时递增,
又∵f(x),g(x)分别是定义R上的奇函数和偶函数,
∴f(x)g(x)为奇函数,关于原点对称,所以f(x)g(x)在x>0时也是增函数.
∵f(3)g(3)=0,∴f(-3)g(-3)=0
所以f(x)g(x)<0的解集为:x<-3或0<x<3
故选D.
点评:本题考查了函数的奇偶性的应用,以及导数的运算,不等式的解法等,属于中档题.
练习册系列答案
相关题目