ÌâÄ¿ÄÚÈÝ
É躯Êýf£¨x£©=a2x2£¨a£¾0£©£¬g£¨x£©=blnx£®
£¨1£©Èôº¯Êýy=f£¨x£©Í¼ÏóÉϵĵ㵽ֱÏßx-y-3=0¾àÀëµÄ×îСֵΪ2
£¬ÇóaµÄÖµ£»
£¨2£©¹ØÓÚxµÄ²»µÈʽ£¨x-1£©2£¾f£¨x£©µÄ½â¼¯ÖеÄÕûÊýÇ¡ÓÐ3¸ö£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨3£©¶ÔÓÚº¯Êýf£¨x£©Óëg£¨x£©¶¨ÒåÓòÉϵÄÈÎÒâʵÊýx£¬Èô´æÔÚ³£Êýk£¬m£¬Ê¹µÃf£¨x£©¡Ýkx+mºÍg£¨x£©¡Ükx+m¶¼³ÉÁ¢£¬Ôò³ÆÖ±Ïßy=kx+mΪº¯Êýf£¨x£©Óëg£¨x£©µÄ¡°·Ö½çÏß¡±£®Éèa=
£¬b=e£¬ÊÔ̽¾¿f£¨x£©Óëg£¨x£©ÊÇ·ñ´æÔÚ¡°·Ö½çÏß¡±£¿Èô´æÔÚ£¬Çó³ö¡°·Ö½çÏß¡±µÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©Èôº¯Êýy=f£¨x£©Í¼ÏóÉϵĵ㵽ֱÏßx-y-3=0¾àÀëµÄ×îСֵΪ2
2 |
£¨2£©¹ØÓÚxµÄ²»µÈʽ£¨x-1£©2£¾f£¨x£©µÄ½â¼¯ÖеÄÕûÊýÇ¡ÓÐ3¸ö£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨3£©¶ÔÓÚº¯Êýf£¨x£©Óëg£¨x£©¶¨ÒåÓòÉϵÄÈÎÒâʵÊýx£¬Èô´æÔÚ³£Êýk£¬m£¬Ê¹µÃf£¨x£©¡Ýkx+mºÍg£¨x£©¡Ükx+m¶¼³ÉÁ¢£¬Ôò³ÆÖ±Ïßy=kx+mΪº¯Êýf£¨x£©Óëg£¨x£©µÄ¡°·Ö½çÏß¡±£®Éèa=
| ||
2 |
£¨1£©ÒòΪf£¨x£©=a2x2£¬ËùÒÔf¡ä£¨x£©=2a2x£¬Áîf¡ä£¨x£©=2a2x=1
µÃ£ºx=
£¬´Ëʱy=
£¬
Ôòµã(
£¬
)µ½Ö±Ïßx-y-3=0µÄ¾àÀëΪ2
£¬
¼´2
=
£¬½âÖ®µÃa=
£®
£¨2£©²»µÈʽ£¨x-1£©2£¾f£¨x£©µÄ½â¼¯ÖеÄÕûÊýÇ¡ÓÐ3¸ö£¬
µÈ¼ÛÓÚ£¨1-a2£©x2-2x+1£¾0Ç¡ÓÐÈý¸öÕûÊý½â£¬¹Ê1-a2£¼0£¬
Áîh£¨x£©=£¨1-a2£©x2-2x+1£¬ÓÉh£¨0£©=1£¾0ÇÒh£¨1£©=-a2£¼0£¨a£¾0£©£¬
ËùÒÔº¯Êýh£¨x£©=£¨1-a2£©x2-2x+1µÄÒ»¸öÁãµãÔÚÇø¼ä£¨0£¬1£©£¬
ÔòÁíÒ»¸öÁãµãÒ»¶¨ÔÚÇø¼ä£¨-3£¬-2£©£¬ÕâÊÇÒòΪ´Ëʱ²»µÈʽ½â¼¯ÖÐÓÐ-2£¬-2£¬0Ç¡ºÃÈý¸öÕûÊý½â
¹Ê
½âÖ®µÃ
¡Üa£¼
£®
£¨3£©ÉèF(x)=f(x)-g(x)=
x2-elnx£¬
ÔòF¡ä(x)=x-
=
=
£®
ËùÒÔµ±0£¼x£¼
ʱ£¬F¡ä£¨x£©£¼0£»µ±x£¾
ʱ£¬F¡ä£¨x£©£¾0£®
Òò´Ëx=
ʱ£¬F£¨x£©È¡µÃ×îСֵ0£¬
Ôòf£¨x£©Óëg£¨x£©µÄͼÏóÔÚx=
´¦Óй«¹²µã(
£¬
)£®
Éèf£¨x£©Óëg£¨x£©´æÔÚ¡°·Ö½çÏß¡±£¬
·½³ÌΪy-
=k(x-
)£¬¼´y=kx+
-k
£¬
ÓÉf(x)¡Ýkx+
-k
ÔÚx¡ÊRºã³ÉÁ¢£¬
Ôòx2-2kx-e+2k
¡Ý0ÔÚx¡ÊRºã³ÉÁ¢£®
ËùÒÔ¡÷=4k2-4(2k
-e)=4k2-8k
+4e=4(k-
)2¡Ü0³ÉÁ¢£¬
Òò´Ëk=
£®
ÏÂÃæÖ¤Ã÷g(x)¡Ü
x-
(x£¾0)ºã³ÉÁ¢£®
ÉèG(x)=elnx-x
+
£¬ÔòG¡ä(x)=
-
=
£®
ËùÒÔµ±0£¼x£¼
ʱ£¬G¡ä£¨x£©£¾0£»µ±x£¾
ʱ£¬G¡ä£¨x£©£¼0£®
Òò´Ëx=
ʱG£¨x£©È¡µÃ×î´óÖµ0£¬Ôòf(x)¡Ü
x-
(x£¾0)³ÉÁ¢£®
¹ÊËùÇó¡°·Ö½çÏß¡±·½³ÌΪ£ºy=
x-
£®
µÃ£ºx=
1 |
2a2 |
1 |
4a2 |
Ôòµã(
1 |
2a2 |
1 |
4a2 |
2 |
¼´2
2 |
|
| ||||
|
| ||
14 |
£¨2£©²»µÈʽ£¨x-1£©2£¾f£¨x£©µÄ½â¼¯ÖеÄÕûÊýÇ¡ÓÐ3¸ö£¬
µÈ¼ÛÓÚ£¨1-a2£©x2-2x+1£¾0Ç¡ÓÐÈý¸öÕûÊý½â£¬¹Ê1-a2£¼0£¬
Áîh£¨x£©=£¨1-a2£©x2-2x+1£¬ÓÉh£¨0£©=1£¾0ÇÒh£¨1£©=-a2£¼0£¨a£¾0£©£¬
ËùÒÔº¯Êýh£¨x£©=£¨1-a2£©x2-2x+1µÄÒ»¸öÁãµãÔÚÇø¼ä£¨0£¬1£©£¬
ÔòÁíÒ»¸öÁãµãÒ»¶¨ÔÚÇø¼ä£¨-3£¬-2£©£¬ÕâÊÇÒòΪ´Ëʱ²»µÈʽ½â¼¯ÖÐÓÐ-2£¬-2£¬0Ç¡ºÃÈý¸öÕûÊý½â
¹Ê
|
4 |
3 |
3 |
2 |
£¨3£©ÉèF(x)=f(x)-g(x)=
1 |
2 |
ÔòF¡ä(x)=x-
e |
x |
x2-e |
x |
(x-
| ||||
x |
ËùÒÔµ±0£¼x£¼
e |
e |
Òò´Ëx=
e |
Ôòf£¨x£©Óëg£¨x£©µÄͼÏóÔÚx=
e |
e |
e |
2 |
Éèf£¨x£©Óëg£¨x£©´æÔÚ¡°·Ö½çÏß¡±£¬
·½³ÌΪy-
e |
2 |
e |
e |
2 |
e |
ÓÉf(x)¡Ýkx+
e |
2 |
e |
Ôòx2-2kx-e+2k
e |
ËùÒÔ¡÷=4k2-4(2k
e |
e |
e |
Òò´Ëk=
e |
ÏÂÃæÖ¤Ã÷g(x)¡Ü
e |
e |
2 |
ÉèG(x)=elnx-x
e |
e |
2 |
e |
x |
e |
| ||||
x |
ËùÒÔµ±0£¼x£¼
e |
e |
Òò´Ëx=
e |
e |
e |
2 |
¹ÊËùÇó¡°·Ö½çÏß¡±·½³ÌΪ£ºy=
e |
e |
2 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿