题目内容

已知函数f(x)=sin(2x+
π
3
)

(Ⅰ)在给定的坐标系内,用“五点作图法”列表画出函数y=f(x)在一个周期内的图象;
(Ⅱ)如何由函数f(x)的图象通过适当的变换得到函数y=sinx的图象,写出变换过程.
(Ⅲ)若f(x)=-
3
5
x∈(0,
π
2
)
,求sin2x的值.
分析:(Ⅰ)直接利用五点法,令2x+
π
3
=0,
π
2
,π,
2
,2π,求出对应的x即可找到五个特殊点的坐标,即可得到函数图象.
(Ⅱ)直接根据函数图象的平移变换和伸缩变换规律即可得到;
(Ⅲ)先根据已知条件求出cos(2x+
π
3
)的值,在利用两角差的余弦公式即可求出结论.
解答:解:(Ⅰ)令2x+
π
3
=0,
π
2
,π,
2
,2π,
解得:x=-
π
6
π
12
π
3
12
6

所以函数f(x)=sin(2x+
π
3
)
过点(-
π
6
,0)(
π
12
,1),(
π
3
,0),(
12
,-1),(
6
,0).
在题中所给的坐标系中把这五个点用光滑的曲线连起来即可.
(Ⅱ)函数f(x)=sin(2x+
π
3
)的图象上各点的纵坐标不变,横坐标伸长到原来的2倍得到f(x)=sin(x+
π
3
),在整体相右平移
π
3
个单位即可得到f(x)=sinx.
(Ⅲ)∵x∈(0,
π
2
),
∴2x+
π
3
∈(
π
3
3
),
又因为f(x)=sin(2x+
π
3
)=-
3
5
<0.
∴cos(2x+
π
3
)=-
1-sin 2(2x+ 
π
3
)
=-
4
5

∴sin2x=sin[(2x+
π
3
)-
π
3
]
=sin(2x+
π
3
)•cos
π
3
-cos(2x+
π
3
)•sin
π
3

=(-
3
5
)×
1
2
-(-
4
5
)×
3
2

=
4
3
-3
10
点评:本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减.注意分清哪个是平移前的函数,哪个是平移后的函数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网