题目内容
已知数列
的前
项和
,数列
满足![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224095688.png)
(1)求数列
的通项公式
;(2)求数列
的前
项和
;
(3)求证:不论
取何正整数,不等式
恒成立
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224048457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224048297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224064540.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224079476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224095688.png)
(1)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224048457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224110348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224079476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224048297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224188373.png)
(3)求证:不论
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224048297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224391993.png)
(1)
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240102244541245.png)
;
(3)错位相减得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240102245001722.png)
得到
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224438913.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240102244541245.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224469688.png)
(3)错位相减得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240102244852503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240102245001722.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240102245321170.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224547693.png)
试题分析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224563357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224578371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224610435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224625989.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224438913.png)
(2)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240102246721135.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224688360.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224703269.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240102244541245.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224469688.png)
(3)记
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224766940.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240102247812072.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240102247972552.png)
作差得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240102248282500.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240102245001722.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240102245321170.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010224547693.png)
点评:中档题,本题具有较强的综合性,本解答从确定通项公式入手,认识到数列的特征,利用“错位相消法”先求和,再“放缩”,达到证明目的。“分组求和法”“裂项相消法”“错位相减法”是高考常常考到数列求和方法。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目