题目内容

如图,

已知椭圆E:的离心率为,过左焦点且斜率为的直线交
椭圆E于A,B两点,线段AB的中点为M,直线交椭圆E于C,D两点.
(1)求椭圆E的方程;
(2)求证:点M在直线上;
(3)是否存在实数,使得四边形AOBC为平行四边形?若存在求出的值,若不存在说明理
由.

(1);(2)证明过程详见解析;(3)存在.

解析试题分析:本题主要考查椭圆的标准方程、直线与椭圆的相交问题、韦达定理、中点坐标公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用已知的离心率和左焦点坐标,得到基本量a,b,c的值,从而得到椭圆的标准方程;第二问,设出点A、B、M的坐标和直线的方程,令直线的方程与椭圆的方程联立,利用所得方程,根据韦达定理得到,从而得到的坐标,由直线方程获得,验证是否在上即可;第三问,数形结合,根据已知条件将题目转化为C点坐标与M点坐标的关系,通过直线与椭圆联立消参,得到的坐标,令,解出k的值,k有解,即存在.
试题解析:(1)由题意可知,于是.
所以,椭圆的标准方程为.                -3分
(2)设
.
所以,
于是.
因为,所以在直线上.             8分
(3)由(2)知点A到直线CD的距离与点B到直线CD的距离相等,
若∆BDM的面积是∆ACM面积的3倍,
则|DM|=3|CM|,因为|OD|=|OC|,于是MOC中点,;
设点C的坐标为,则.因为,解得.
于是,解得,所以.        14分
考点:椭圆的标准方程、直线与椭圆的相交问题、韦达定理、中点坐标公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网