题目内容
8.已知函数f(x)=x(lnx+1)(x>0),f(x)的导数是f′(x).(1)求函数f(x)在点(1,f(1))处的切线方程;
(2)求函数F(x)=ax2+f′(x)(a∈R)的单调区间;
(3)若斜率为k的直线与曲线y=f′(x)交于A(x1,y1),B(x2,y2)(x1<x2)两点,求证:x1<$\frac{1}{k}$<x2.
分析 (1)求出函数f(x)的导数,求出切线的斜率f′(1),求出f(1)的值,从而求出切线方程;
(2)先求出F(x)的导数,通过讨论参数a的范围,从而求出函数的单调区间;
(3)先求出k的表达式,问题转化为证明证x1<$\frac{{x}_{2}{-x}_{1}}{l{nx}_{2}-l{nx}_{1}}$<x2,等价于证1<$\frac{\frac{{x}_{2}}{{x}_{1}}-1}{ln\frac{{x}_{2}}{{x}_{1}}}$<$\frac{{x}_{2}}{{x}_{1}}$,令t=$\frac{{x}_{2}}{{x}_{1}}$,等价于lnt<t-1<tlnt(t>0)(*),结合函数的单调性,从而证出结论成立.
解答 解:(1)∵f′(x)=lnx+2,∴f′(1)=ln1+2=2,
而f(1)=1,
∴函数f(x)在点(1,1)处的方程是:y-1=2(x-1),
即2x-y-1=0;
(2)由f(x)=x(lnx+1)(x>0),得f′(x)=lnx+2(x>0),
F(x)=ax2+lnx+2(x>0),∴F′(x)=2ax+$\frac{1}{x}$=$\frac{2{ax}^{2}+1}{x}$(x>0).
①当a≥0时,恒有F′(x)>0,故F(x)在(0,+∞)上是增函数;
②当a<0时,
令F′(x)>0,得2ax2+1>0,解得0<x<$\sqrt{-\frac{1}{2a}}$;
令F′(x)<0,得2ax2+1<0,解得x>$\sqrt{-\frac{1}{2a}}$;
综上,当a≥0时,F(x)在(0,+∞)上是增函数;
当a<0时,F(x)在(0,$\sqrt{-\frac{1}{2a}}$)上单调递增,在($\sqrt{-\frac{1}{2a}}$,+∞)上单调递减;
(3)k=$\frac{f′{(x}_{2})-f′{(x}_{1})}{{x}_{2}{-x}_{1}}$=$\frac{l{nx}_{2}-l{nx}_{1}}{{x}_{2}{-x}_{1}}$,
要证x1<$\frac{1}{k}$<x2,即证x1<$\frac{{x}_{2}{-x}_{1}}{l{nx}_{2}-l{nx}_{1}}$<x2,
等价于证1<$\frac{\frac{{x}_{2}}{{x}_{1}}-1}{ln\frac{{x}_{2}}{{x}_{1}}}$<$\frac{{x}_{2}}{{x}_{1}}$,令t=$\frac{{x}_{2}}{{x}_{1}}$,
则只要证1<$\frac{t-1}{lnt}$<t,由t>1,知lnt>0,故等价于lnt<t-1<tlnt(t>0)(*)
①设g(t)=t-1-lnt(t≥1),则g′(t)=1-$\frac{1}{t}$≥0(t≥1),
故g(t)在[1,+∞)上是增函数,
∴当t>1时,g(t)=t-1-lnt>g(1)=0,即t-1>lnt(t-1)
②设h(t)=tlnt-(t-1)(t≥1),则h′(t)=lnt≥0(t≥1),
故h(t)在[1,+∞)上是增函数.
∴当t>1时,h(t)=tlnt-(t-1)>h(1)=0,即t-1(t>1).
由①②知(*)成立,故x1<$\frac{1}{k}$<x2.
点评 本题考查了求曲线的切线方程,考查导数的应用,考查函数的单调性,考查转化思想,本题有一定的难度.
A. | $\frac{3}{2}$ | B. | $\frac{5}{3}$ | C. | $\frac{25}{6}$ | D. | 不存在 |
A. | -1+2i | B. | 1+2i | C. | -2+i | D. | 2+i |
A. | $({2,2\sqrt{2}}]$ | B. | $({\sqrt{7},3})$ | C. | $({\sqrt{7},2\sqrt{2}}]$ | D. | $[{2\sqrt{2},3})$ |