题目内容
已知定义在(-1,1)上的偶函数f(x)在(0,1)上单调递增,则满足f(2x-1)<f(x)的x的取值范围是______.
解;∵函数f(x)是偶函数,∴f(x)=f(-x)=f(|x|)
∵f(2x-1)<f(x),
∴f(|2x-1|)<f(|x|)
∵函数f(x)在区间(0,1)单调递增,
∴0≤|2x-1|<|x|<1,解得:x∈(
,1).
故答案为:(
,1).
∵f(2x-1)<f(x),
∴f(|2x-1|)<f(|x|)
∵函数f(x)在区间(0,1)单调递增,
∴0≤|2x-1|<|x|<1,解得:x∈(
1 |
3 |
故答案为:(
1 |
3 |
练习册系列答案
相关题目