题目内容
【题目】已知函数.
(1)当时,求函数的单调区间;
(2)是否存在实数,使得至少有一个,使成立,若存在,求出实数的取值范围;若不存在,说明理由.
【答案】(1)单调递增区间为和,单调减区间为;(2)答案见解析.
【解析】试题分析: 求得函数f(x)的定义域,求导函数,对a讨论,利用导数的正负,即可确定函数f(x)的单调区间;
(2)先考虑“至少有一个,使成立”的否定“, 恒成立”.即可转化为a+(a+1)xlnx≥0恒成立,令φ(x)=a+(a+1)xlnx,则只需φ(x)≥0在x∈(0,+∞)恒成立即可.
试题解析:
(1)函数的定义域为,
1)当时,由得, 或,由得,
故函数的单调递增区间为和,单调减区间为
2)当时, , 的单调增区间为
(2)先考虑“至少有一个,使成立”的否定“, 恒成立”.
即可转化为恒成立.
令,则只需在恒成立即可,
,
当时,在时, ,在时,
的最小值为,由得,
故当时, 恒成立,
当时, , 在不能恒成立,
当时,取,有, 在不能恒成立,
综上所述,即时,至少有一个,使成立.
练习册系列答案
相关题目
【题目】(题文)某研究小组在电脑上进行人工降雨模拟实验,准备用A、B、C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其实验数据统计如下:
方式 | 实施地点 | 大雨 | 中雨 | 小雨 | 模拟实验总次数 |
A | 甲 | 4次 | 6次 | 2次 | 12次 |
B | 乙 | 3次 | 6次 | 3次 | 12次 |
C | 丙 | 2次 | 2次 | 8次 | 12次 |
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟实验的统计数据:
(1)求甲、乙、丙三地都恰为中雨的概率;
(2)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只要是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量ξ,求随机变量ξ的分布列和均值E(ξ).