题目内容

11.央视财经频道《升级到家》栏目答题有奖,游戏规则:每个家庭两轮游戏,均为三局两胜,第一轮3题答对2题,可获得小物件(家电),价值1600元;第二轮3题答对2题,可获得大物件(家具)价值5400元(第一轮的答题结果与第二轮答题无关),某高校大二学生吴乾是位孝顺的孩子,决定报名参赛,用自己的知识答题赢取大奖送给父母,若吴乾同学第一轮3题,每题答对的概率均为$\frac{3}{4}$,第二轮三题每题答对的概率均为$\frac{2}{3}$.
(Ⅰ)求吴乾同学能为父母赢取小物件(家电)的概率;
(Ⅱ)若吴乾同学答题获得的物品价值记为X(元)求X的概率分布列及数学期望.

分析 (1)由题意赢取小物件即第一轮答对2题,故概率P=$\frac{3}{4}×\frac{3}{4}+({\frac{3}{4}×\frac{1}{4}+\frac{1}{4}×\frac{3}{4}})×\frac{3}{4}$,计算即可;
(2)赢取大物件即第二轮答对2题,可得概率P′=$\frac{2}{3}×\frac{2}{3}+({\frac{2}{3}×\frac{1}{3}+\frac{1}{3}×\frac{2}{3}})×\frac{2}{3}$,化简可得;
同理可求P(X=0)和P(X=1600)和P(X=5400)以及P(X=7000),可得X的分布列和期望值.

解答 解:(1)由题意赢取小物件即第一轮答对2题,
∴所求概率P=$\frac{3}{4}×\frac{3}{4}+({\frac{3}{4}×\frac{1}{4}+\frac{1}{4}×\frac{3}{4}})×\frac{3}{4}$=$\frac{9}{16}+\frac{9}{32}=\frac{27}{32}$;
(2)赢取大物件即第二轮答对2题,
∴所求概率P′=$\frac{2}{3}×\frac{2}{3}+({\frac{2}{3}×\frac{1}{3}+\frac{1}{3}×\frac{2}{3}})×\frac{2}{3}$=$\frac{4}{9}+\frac{8}{27}=\frac{20}{27}$,
同理可求P(X=0)=($\frac{1}{4}×\frac{1}{4}$+$\frac{3}{4}$×$\frac{1}{4}×\frac{1}{4}$)×($\frac{1}{3}×\frac{1}{3}$+$\frac{2}{3}$×$\frac{1}{3}×\frac{1}{3}$)=$\frac{35}{864}$,
P(X=1600)=$\frac{27}{32}$×($\frac{1}{3}×\frac{1}{3}$+$\frac{2}{3}$×$\frac{1}{3}×\frac{1}{3}$)=$\frac{189}{864}$,
P(X=5400)=($\frac{1}{4}×\frac{1}{4}$+$\frac{3}{4}$×$\frac{1}{4}×\frac{1}{4}$)×$\frac{20}{27}$=$\frac{100}{864}$
P(X=7000)=$\frac{27}{32}$×$\frac{20}{27}$=$\frac{540}{864}$
可得X的分布列为:

X0160054007000
P$\frac{35}{864}$$\frac{189}{864}$$\frac{100}{864}$$\frac{540}{864}$
∴$E(X)=0×\frac{35}{864}+1600×\frac{189}{864}+5400×\frac{100}{864}+7000×\frac{540}{864}$=350+625+4375=5350(元)

点评 本题考查离散型随机变量的分布列和期望,涉及概率的加法公式和乘法公式,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网