题目内容

解答题:解答应写出文字说明、证明过程或演算步骤.

设平面上的动向量,其中s,t为不同时为0的两个实数,实数k≥0,满足

(1)

求函数关系式s=f(t)

(2)

若函数f(t)在(1,+∞)上单调递增,求k的范围

(3)

对上述f(t),当k=0时,存在正项数列{an}满足f(a1)+f(a2)+…+f(an)=Sn2,其中Sn=a1+a2+…+an,证明:<3

答案:
解析:

(1)

解:

(2)

解:

f(t)的递增区间为递增又k≥0

(3)

解:

两式相减得

等差且公差为1,首项为1


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网