题目内容
4.已知实数x,y满足约束条件$\left\{\begin{array}{l}x-y+4≥0\\ x+y≥0\\ y≤4\end{array}\right.$,则目标函数z=x-2y的最小值是( )A. | 0 | B. | -6 | C. | -8 | D. | -12 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}x-y+4≥0\\ x+y≥0\\ y≤4\end{array}\right.$作出可行域如图,
化目标函数z=x-2y为$y=\frac{x}{2}-\frac{z}{2}$,
由图可知,当直线$y=\frac{x}{2}-\frac{z}{2}$过B时直线在y轴上的截距最大,z有最小值,等于0-2×4=-8.
故选:C.
点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
12.若过点$P({-2\sqrt{3},-2})$的直线与圆x2+y2=4有公共点,则该直线的倾斜角的取值范围是( )
A. | $({0,\frac{π}{6}})$ | B. | $[{0,\frac{π}{3}}]$ | C. | $[{0,\frac{π}{6}}]$ | D. | $({0,\frac{π}{3}}]$ |