题目内容
17.若函数f(x)=$\frac{|cosx|}{sinx+3}$-m有零点,则实数m的取值范围是( )A. | [0,1) | B. | [0,$\frac{\sqrt{2}}{2}$] | C. | [0,$\frac{\sqrt{2}}{4}$] | D. | (1,$\frac{\sqrt{2}}{4}$] |
分析 转化方程$\frac{cosx}{sinx+3}$=m有解,分类当cosx≥0时,$\frac{cosx}{sinx+3}$=m,m≥0,根据有界性sin(x+θ)=$\frac{3m}{\sqrt{{m}^{2}+1}}$,得出|$\frac{3m}{\sqrt{{m}^{2}+1}}$|≤1,且m≥0.
当cosx<0时,-$\frac{cosx}{sinx+3}$=m,m≥0.化简得出:sin(x+α)=$\frac{3m}{\sqrt{{m}^{2}+1}}$,|$\frac{3m}{\sqrt{{m}^{2}+1}}$|≤1,且m≥0,求解不等式即可.
解答 解:∵函数f(x)=$\frac{|cosx|}{sinx+3}$-m有零点,
∴方程$\frac{cosx}{sinx+3}$=m有解,
∴当cosx≥0时,$\frac{cosx}{sinx+3}$=m,m≥0
msinx-cosx=3m,
化简得出:sin(x+θ)=$\frac{3m}{\sqrt{{m}^{2}+1}}$,
|$\frac{3m}{\sqrt{{m}^{2}+1}}$|≤1,且m≥0,
求解得出m∈[0,$\frac{\sqrt{2}}{4}$]
当cosx<0时,-$\frac{cosx}{sinx+3}$=m,m≥0.
msinx+cosx=3m,
化简得出:sin(x+α)=$\frac{3m}{\sqrt{{m}^{2}+1}}$,
|$\frac{3m}{\sqrt{{m}^{2}+1}}$|≤1,且m≥0,
解得出m∈[0,$\frac{\sqrt{2}}{4}$]
即实数m的取值范围是[0,$\frac{\sqrt{2}}{4}$],
故选:C
点评 本题本考查了函数的性质,零点的求解,利用方程的有解来解决,属于中档题.
A. | {m|m≠4} | B. | {m|m∈R} | C. | {m|m≤0} | D. | {m|m≤0或m≥4} |
A. | [-2$\sqrt{5}$,2$\sqrt{5}$] | B. | [0,2] | C. | [-2$\sqrt{5}$,2] | D. | [$\frac{2\sqrt{5}}{5}$,1] |