题目内容

3.证明:C$\left.\begin{array}{l}{0}\\{n}\end{array}\right.$+$\frac{1}{2}$C$\left.\begin{array}{l}{1}\\{n}\end{array}\right.$+$\frac{1}{3}$C$\left.\begin{array}{l}{2}\\{n}\end{array}\right.$+…+$\frac{1}{k}$C$\left.\begin{array}{l}{k-1}\\{n}\end{array}\right.$+…+$\frac{1}{n+1}$C$\left.\begin{array}{l}{n}\\{n}\end{array}\right.$=$\frac{1}{n+1}$(2n+1-1).

分析 利用组合数的性质,化$\frac{1}{k}$${C}_{n}^{k-1}$=$\frac{1}{n+1}$${C}_{n+1}^{k}$,代入题目中等式的左边,即可得出右边.

解答 证明:∵$\frac{1}{k}$${C}_{n}^{k-1}$=$\frac{1}{k}$•$\frac{n!}{(k-1)!•(n-k+1)!}$
=$\frac{n!}{k!•(n+1-k)!}$
=$\frac{1}{n+1}$•$\frac{(n+1)!}{k!•(n+1-k)!}$
=$\frac{1}{n+1}$${C}_{n+1}^{k}$,
∴C$\left.\begin{array}{l}{0}\\{n}\end{array}\right.$+$\frac{1}{2}$C$\left.\begin{array}{l}{1}\\{n}\end{array}\right.$+$\frac{1}{3}$C$\left.\begin{array}{l}{2}\\{n}\end{array}\right.$+…+$\frac{1}{k}$C$\left.\begin{array}{l}{k-1}\\{n}\end{array}\right.$+…+$\frac{1}{n+1}$C$\left.\begin{array}{l}{n}\\{n}\end{array}\right.$
=$\frac{1}{n+1}$•${C}_{n+1}^{1}$+$\frac{1}{n+1}$•${C}_{n+1}^{2}$+$\frac{1}{n+1}$•${C}_{n+1}^{3}$+…+$\frac{1}{n+1}$•${C}_{n+1}^{k}$+…+$\frac{1}{n+1}$•${C}_{n+1}^{n+1}$
=$\frac{1}{n+1}$•(${C}_{n+1}^{1}$+${C}_{n+1}^{2}$+${C}_{n+1}^{3}$+…+${C}_{n+1}^{k}$+…+${C}_{n+1}^{n+1}$)
=$\frac{1}{n+1}$(2n+1-1).

点评 本题考查了组合数公式的应用问题,也考查了二项式定理的应用问题,是中档题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网