题目内容
【题目】设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为 ,则a= .
【答案】4
【解析】解:∵a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值分别为loga2a,logaa=1,
它们的差为 ,
∴ ,a=4,
所以答案是4
【考点精析】认真审题,首先需要了解函数的最值及其几何意义(利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值),还要掌握对数函数的单调性与特殊点(过定点(1,0),即x=1时,y=0;a>1时在(0,+∞)上是增函数;0>a>1时在(0,+∞)上是减函数)的相关知识才是答题的关键.
练习册系列答案
相关题目