题目内容
已知抛物线C的顶点在原点,焦点为F(0,1).(Ⅰ)求抛物线C的方程;
(Ⅱ)在抛物线C上是否存在点P,使得过点P的直线交C于另一点Q,满足PF⊥QF,且PQ与C在点P处的切线垂直?若存在,求出点P的坐标;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223053911960318/SYS201311012230539119603021_ST/images0.png)
【答案】分析:(Ⅰ)设抛物线C的方程是x2=ay,根据焦点为F的坐标求得a,进而可得抛物线的方程.
(Ⅱ)设P(x1,y1),Q(x2,y2),进而可得抛物线C在点P处的切线方程和直线PQ的方程,代入抛物线方程根据韦达定理,可求得x1+x2和x1x2的表达式,根据
×
求得y1=4及点P的坐标.
解答:解:(Ⅰ)设抛物线C的方程是x2=ay,
则
,
即a=4.
故所求抛物线C的方程为x2=4y.
(Ⅱ)解:设P(x1,y1),Q(x2,y2),
则抛物线C在点P处的切线方程是
,
直线PQ的方程是
.
将上式代入抛物线C的方程,得
,
故x1+x2=
,x1x2=-8-4y1,
所以x2=
-x1,y2=
+y1+4.
而
=(x1,y1-1),
=(x2,y2-1),
×
=x1x2+(y1-1)(y2-1)
=x1x2+y1y2-(y1+y2)+1
=-4(2+y1)+y1(
+y1+4)-(
+2y1+4)+1
=y12-2y1-
-7
=(y12+2y1+1)-4(
+y1+2)
=(y1+1)2-![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223053911960318/SYS201311012230539119603021_DA/17.png)
=
=0,
故y1=4,此时,点P的坐标是(±4,4).
经检验,符合题意.
所以,满足条件的点P存在,其坐标为P(±4,4).
点评:本题主要考查抛物线的标准方程以及抛物线与直线的关系.
(Ⅱ)设P(x1,y1),Q(x2,y2),进而可得抛物线C在点P处的切线方程和直线PQ的方程,代入抛物线方程根据韦达定理,可求得x1+x2和x1x2的表达式,根据
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223053911960318/SYS201311012230539119603021_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223053911960318/SYS201311012230539119603021_DA/1.png)
解答:解:(Ⅰ)设抛物线C的方程是x2=ay,
则
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223053911960318/SYS201311012230539119603021_DA/2.png)
即a=4.
故所求抛物线C的方程为x2=4y.
(Ⅱ)解:设P(x1,y1),Q(x2,y2),
则抛物线C在点P处的切线方程是
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223053911960318/SYS201311012230539119603021_DA/3.png)
直线PQ的方程是
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223053911960318/SYS201311012230539119603021_DA/4.png)
将上式代入抛物线C的方程,得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223053911960318/SYS201311012230539119603021_DA/5.png)
故x1+x2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223053911960318/SYS201311012230539119603021_DA/6.png)
所以x2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223053911960318/SYS201311012230539119603021_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223053911960318/SYS201311012230539119603021_DA/8.png)
而
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223053911960318/SYS201311012230539119603021_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223053911960318/SYS201311012230539119603021_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223053911960318/SYS201311012230539119603021_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223053911960318/SYS201311012230539119603021_DA/12.png)
=x1x2+y1y2-(y1+y2)+1
=-4(2+y1)+y1(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223053911960318/SYS201311012230539119603021_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223053911960318/SYS201311012230539119603021_DA/14.png)
=y12-2y1-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223053911960318/SYS201311012230539119603021_DA/15.png)
=(y12+2y1+1)-4(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223053911960318/SYS201311012230539119603021_DA/16.png)
=(y1+1)2-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223053911960318/SYS201311012230539119603021_DA/17.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223053911960318/SYS201311012230539119603021_DA/18.png)
故y1=4,此时,点P的坐标是(±4,4).
经检验,符合题意.
所以,满足条件的点P存在,其坐标为P(±4,4).
点评:本题主要考查抛物线的标准方程以及抛物线与直线的关系.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目