ÌâÄ¿ÄÚÈÝ
ÒÑÖª¶þ´Îº¯Êýf£¨x£©=x2-ax+a£¨x¡ÊR£©Í¬Ê±Âú×㣺¢Ù²»µÈʽf£¨x£©¡Ü0µÄ½â¼¯ÓÐÇÒÖ»ÓÐÒ»¸öÔªËØ£»¢ÚÔÚ¶¨ÒåÓòÄÚ´æÔÚ0£¼x1£¼x2£¬Ê¹µÃ²»µÈʽf£¨x1£©£¾f£¨x2£©³ÉÁ¢£®ÉèÊýÁÐ{an}µÄÇ°nÏîºÍSn=f£¨n£©£®£¨1£©Çóº¯Êýf£¨x£©µÄ±í´ïʽ£»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÔÚ¸÷Ïî¾ù²»ÎªÁãµÄÊýÁÐ{cn}ÖУ¬Èôci•ci+1£¼0£¬Ôò³Æci£¬ci+1ΪÕâ¸öÊýÁÐ{cn}Ò»¶Ô±äºÅÏÁîcn=1-
a | an |
·ÖÎö£º£¨1£©Óɲ»µÈʽf£¨x£©¡Ü0µÄ½â¼¯ÓÐÇÒÖ»ÓÐÒ»¸öÔªËؿɵá÷=a2-4a=0£¬ËùÒÔa=0»òa=4£¬ÓÖÔÚ¶¨ÒåÓòÄÚ´æÔÚ0£¼x1£¼x2£¬Ê¹µÃ²»µÈʽf£¨x1£©£¾f£¨x2£©³ÉÁ¢£¬ËùÒÔa=4£®
£¨2£©Óɵ±n¡Ý2ʱ£¬an=Sn-Sn-1¿ÉµÃan=2n-5£¬µ«ÊDZØÐë¼ìÑéµ±n=1ʱ£¬a1=S1=1Ò²·ûºÏÉÏʽ£¬¡àan=
£®
£¨3£©·½·¨Ò»ÊÇͨ¹ýÊýÁÐ{cn}µÄµ¥µ÷ÐÔ½â´ð¼´cn+1-cn=
µÄµ¥µ÷ÐÔ£®
·½·¨¶þ½â²»µÈʽ
£¼0ÕÒ³öÊýÁÐ{cn}µÄ±äºÅÏîµÄ¶ÔÊý£®
£¨2£©Óɵ±n¡Ý2ʱ£¬an=Sn-Sn-1¿ÉµÃan=2n-5£¬µ«ÊDZØÐë¼ìÑéµ±n=1ʱ£¬a1=S1=1Ò²·ûºÏÉÏʽ£¬¡àan=
|
£¨3£©·½·¨Ò»ÊÇͨ¹ýÊýÁÐ{cn}µÄµ¥µ÷ÐÔ½â´ð¼´cn+1-cn=
8 |
(2n-5)(2n-3) |
·½·¨¶þ½â²»µÈʽ
2i-9 |
2i-5 |
2i-7 |
2i-3 |
½â´ð£º½â£º£¨1£©¡ßf£¨x£©¡Ü0µÄ½â¼¯ÓÐÇÒÖ»ÓÐÒ»¸öÔªËØ£¬
¡à¡÷=a2-4a=0µÃa=0»òa=4£¬
µ±a=4ʱ£¬º¯Êýf£¨x£©=x2-4x+4ÔÚ£¨0£¬2£©Éϵݼõ£¬
¹Ê´æÔÚ0£¼x1£¼x2£¬Ê¹µÃ²»µÈʽf£¨x1£©£¾f£¨x2£©³ÉÁ¢£®
µ±a=0ʱ£¬º¯Êýf£¨x£©=x2ÔÚ£¨0£¬+¡Þ£©ÉϵÝÔö£¬
¹Ê²»´æÔÚ0£¼x1£¼x2£¬Ê¹µÃ²»µÈʽf£¨x1£©£¾f£¨x2£©³ÉÁ¢£®
×ÛÉÏ£ºa=4£¬f£¨x£©=x2-4x+4£®
£¨2£©ÓÉ£¨1£©¿ÉÖª£ºSn=n2-4n+4£®µ±n=1ʱ£¬a1=S1=1£¬
µ±n¡Ý2ʱ£¬an=Sn-Sn-1=£¨n2-4n+4£©-[£¨n-1£©2-4£¨n-1£©+4]=2n-5£¬
¡àan=
£¨3£©·¨Ò»£ºÓÉÌâÉècn=
£¬
¡ßµ±n¡Ý2ʱ£¬cn+1-cn=
-
=
£¬
¡àµ±n¡Ý3ʱ£¬ÊýÁÐ{cn}µÝÔö£¬¡ßc3=-3£¼0£¬ÓÖÓÉcn=1-
¡Ý0£¬µÃn¡Ý5£¬
¿ÉÖªc4•c5£¼0£¬¼´n¡Ý3ʱ£¬ÓÐÇÒÖ»ÓÐÒ»¶Ô±äºÅÏ
ÓÖ¡ßc1=-3£¬c2=5£¬c3=-3£¬¼´c1•c2£¼0£¬c2•c3£¼0£¬¡à´Ë´¦ÓÐ2¶Ô±äºÅÏ
×ÛÉϿɵãºÊýÁÐ{cn}µÄ±äºÅÏîÓÐ3¶Ô£®
·¨¶þ£ºµ±i¡Ý2ʱ£¬ci=1-
=
£¬
¡ßci•ci+1£¼0£¬¡à
•
£¼0£¬
¡à
£¼i£¼
»ò
£¼i£¼
£¬¡ßi¡Ý2£¬i¡ÊN*£¬¡ài=2»ò4£¬
¼´c2•c3£¼0£¬c4•c5£¼0£¬´Ë´¦ÓÐ2¶Ô±äºÅÏ
ÓÖ¡ßc1=-3£¬c2=5£¬¼´c1•c2£¼0£¬´Ë´¦ÓÐÒ»¶Ô±äºÅÏ
×ÛÉϿɵãºÊýÁÐ{cn}µÄ¹²ÓÐ3¶Ô±äºÅÏ
¡à¡÷=a2-4a=0µÃa=0»òa=4£¬
µ±a=4ʱ£¬º¯Êýf£¨x£©=x2-4x+4ÔÚ£¨0£¬2£©Éϵݼõ£¬
¹Ê´æÔÚ0£¼x1£¼x2£¬Ê¹µÃ²»µÈʽf£¨x1£©£¾f£¨x2£©³ÉÁ¢£®
µ±a=0ʱ£¬º¯Êýf£¨x£©=x2ÔÚ£¨0£¬+¡Þ£©ÉϵÝÔö£¬
¹Ê²»´æÔÚ0£¼x1£¼x2£¬Ê¹µÃ²»µÈʽf£¨x1£©£¾f£¨x2£©³ÉÁ¢£®
×ÛÉÏ£ºa=4£¬f£¨x£©=x2-4x+4£®
£¨2£©ÓÉ£¨1£©¿ÉÖª£ºSn=n2-4n+4£®µ±n=1ʱ£¬a1=S1=1£¬
µ±n¡Ý2ʱ£¬an=Sn-Sn-1=£¨n2-4n+4£©-[£¨n-1£©2-4£¨n-1£©+4]=2n-5£¬
¡àan=
|
£¨3£©·¨Ò»£ºÓÉÌâÉècn=
|
¡ßµ±n¡Ý2ʱ£¬cn+1-cn=
4 |
2n-5 |
4 |
2n-3 |
8 |
(2n-5)(2n-3) |
¡àµ±n¡Ý3ʱ£¬ÊýÁÐ{cn}µÝÔö£¬¡ßc3=-3£¼0£¬ÓÖÓÉcn=1-
4 |
2n-5 |
¿ÉÖªc4•c5£¼0£¬¼´n¡Ý3ʱ£¬ÓÐÇÒÖ»ÓÐÒ»¶Ô±äºÅÏ
ÓÖ¡ßc1=-3£¬c2=5£¬c3=-3£¬¼´c1•c2£¼0£¬c2•c3£¼0£¬¡à´Ë´¦ÓÐ2¶Ô±äºÅÏ
×ÛÉϿɵãºÊýÁÐ{cn}µÄ±äºÅÏîÓÐ3¶Ô£®
·¨¶þ£ºµ±i¡Ý2ʱ£¬ci=1-
4 |
2i-5 |
2i-9 |
2i-5 |
¡ßci•ci+1£¼0£¬¡à
2i-9 |
2i-5 |
2i-7 |
2i-3 |
¡à
3 |
2 |
5 |
2 |
7 |
2 |
9 |
2 |
¼´c2•c3£¼0£¬c4•c5£¼0£¬´Ë´¦ÓÐ2¶Ô±äºÅÏ
ÓÖ¡ßc1=-3£¬c2=5£¬¼´c1•c2£¼0£¬´Ë´¦ÓÐÒ»¶Ô±äºÅÏ
×ÛÉϿɵãºÊýÁÐ{cn}µÄ¹²ÓÐ3¶Ô±äºÅÏ
µãÆÀ£º.±¾Ì⿼²éÊýÁеÄÐÔÖÊÓ뺯ÊýµÄÐÔÖÊÏà½áºÏµÄ֪ʶµã£¬Ò»°ãÊǵ¥µ÷ÐÔ£¬×îÖµµÈÐÔÖʵĽáºÏ£¬ÊýÁÐÓ뺯ÊýÏà½áºÏÎÊÌâÊǸ߿¼¿¼²éµÄÖصãÄÚÈÝ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿