题目内容

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).
分析:(1)根据关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),即不等式x2+(a+1-2m)x+m2+m<0的解集为(m,m+1),从而有x2+(a+1-2m)x+m2+m=(x-m)(x-m-1).化简后对照系数即可得出a的值;
(2)由(1)得g(x)=
f(x)
x-1
=
x2-2x+m+1
x-1
=(x-1)+
m
x-1
.利用导数研究其单调性,从而得出极值的情形;
(3)当m=1时g(x)=(x-1)+
1
x-1
.利用二项定理化简式子[g(x+1)]n-g(xn+1),再利用组合数的性质或数学归纳法进行证明即得对?n∈N*,[g(x+1)]n-g(xn+1)≥2n-2都成立.
解答:解:(1)∵关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),
即不等式x2+(a+1-2m)x+m2+m<0的解集为(m,m+1),
∴x2+(a+1-2m)x+m2+m=(x-m)(x-m-1).
∴x2+(a+1-2m)x+m2+m=x2-(2m+1)x+m(m+1).
∴a+1-2m=-(2m+1).
∴a=-2.…(2分)
(2)解法1:由(1)得g(x)=
f(x)
x-1
=
x2-2x+m+1
x-1
=(x-1)+
m
x-1

∴φ(x)=g(x)-kln(x-1)=(x-1)+
m
x-1
-kln(x-1)的定义域为(1,+∞).
∴φ'(x)=1-
m
(x-1)2
-
k
x-1
=
x2-(2+k)x+k-m+1
(x-1)2
.…(3分)
方程x2-(2+k)x+k-m+1=0(*)的判别式△=(2+k)2-4(k-m+1)=k2+4m.…(4分)
①当m>0时,△>0,方程(*)的两个实根为x1=
2+k-
k2+4m
2
<1
x2=
2+k+
k2+4m
2
>1
,…(5分)
则x∈(1,x2)时,φ'(x)<0;x∈(x2,+∞)时,φ'(x)>0.
∴函数φ(x)在(1,x2)上单调递减,在(x2,+∞)上单调递增.
∴函数φ(x)有极小值点x2.…(6分)
②当m<0时,由△>0,得k<-2
-m
k>2
-m

k<-2
-m
,则x1=
2+k-
k2+4m
2
<1
x2=
2+k+
k2+4m
2
<1

故x∈(1,+∞)时,φ'(x)>0,(苏元高考吧:www.gaokao8.net)
∴函数φ(x)在(1,+∞)上单调递增.
∴函数φ(x)没有极值点.…(7分)
k>2
-m
时,x1=
2+k-
k2+4m
2
>1
x2=
2+k+
k2+4m
2
>1

则x∈(1,x1)时,φ'(x)>0;x∈(x1,x2)时,φ'(x)<0;x∈(x2,+∞)时,φ'(x)>0.
∴函数φ(x)在(1,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上单调递增.
∴函数φ(x)有极小值点x2,有极大值点x1.…(8分)
综上所述,当m>0时,k取任意实数,函数φ(x)有极小值点x2
当m<0时,k>2
-m
,函数φ(x)有极小值点x2,有极大值点x1.…(9分)
(其中x1=
2+k-
k2+4m
2
x2=
2+k+
k2+4m
2

解法2:由(1)得g(x)=
f(x)
x-1
=
x2-2x+m+1
x-1
=(x-1)+
m
x-1

∴φ(x)=g(x)-kln(x-1)=(x-1)+
m
x-1
-kln(x-1)的定义域为(1,+∞).
∴φ'(x)=1-
m
(x-1)2
-
k
x-1
=
x2-(2+k)x+k-m+1
(x-1)2
.…(3分)
若函数φ(x)=g(x)-kln(x-1)存在极值点等价于函数φ'(x)有两个不等的零点,且
至少有一个零点在(1,+∞)上.…(4分)
令φ'(x)=
x2-(2+k)x+k-m+1
(x-1)2
=0,
得x2-(2+k)x+k-m+1=0,(*)
则△=(2+k)2-4(k-m+1)=k2+4m>0,(**)              …(5分)
方程(*)的两个实根为x1=
2+k-
k2+4m
2
x2=
2+k+
k2+4m
2

设h(x)=x2-(2+k)x+k-m+1,
①若x1<1,x2>1,则h(1)=-m<0,得m>0,此时,k取任意实数,(**)成立.
则x∈(1,x2)时,φ'(x)<0;x∈(x2,+∞)时,φ'(x)>0.
∴函数φ(x)在(1,x2)上单调递减,在(x2,+∞)上单调递增.
∴函数φ(x)有极小值点x2.…(6分)
②若x1>1,x2>1,则
h(1)=-m>0
2+k
2
>1
m<0
k>0

又由(**)解得k>2
-m
k<-2
-m

k>2
-m
.…(7分)
则x∈(1,x1)时,φ'(x)>0;x∈(x1,x2)时,φ'(x)<0;x∈(x2,+∞)时,φ'(x)>0.
∴函数φ(x)在(1,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上单调递增.
∴函数φ(x)有极小值点x2,有极大值点x1.…(8分)
综上所述,当m>0时,k取任何实数,函数φ(x)有极小值点x2
当m<0时,k>2
-m
,函数φ(x)有极小值点x2,有极大值点x1.…(9分)
(其中x1=
2+k-
k2+4m
2
x2=
2+k+
k2+4m
2

(3)证法1:∵m=1,∴g(x)=(x-1)+
1
x-1

[g(x+1)]n-g(xn+1)=(x+
1
x
)n-(xn+
1
xn
)
=xn+
C
1
n
xn-1
1
x
+
C
2
n
xn-2
1
x2
+…+
C
n-1
n
x•
1
xn-1
+
C
n
n
1
xn
-(xn+
1
xn
)

=
C
1
n
xn-2+
C
2
n
xn-4+…+
C
n-1
n
x2-n
.…(10分)
令T=
C
1
n
xn-2+
C
2
n
xn-4+…+
C
n-1
n
x2-n

则T=
C
n-1
n
x2-n+
C
n-2
n
x4-n+…+
C
1
n
xn-2
=
C
1
n
x2-n+
C
2
n
x4-n+…+
C
n-1
n
xn-2

∵x>0,
∴2T=
C
1
n
(xn-2+x2-n)+
C
2
n
(xn-4+x4-n)+…+
C
n-1
n
(x2-n+xn-2)
…(11分)≥
C
1
n
•2
xn-2x2-n
+
C
2
n
•2
xn-4x4-n
+…+
C
n-1
n
•2
x2-nxn-2
…(12分)
=2(
C
1
n
+
C
2
n
+…+
C
n-1
n
)
=2(
C
0
n
+
C
1
n
+
C
2
n
+…+
C
n-1
n
+
C
n
n
-
C
0
n
-
C
n
n
)
=2(2n-2).…(13分)
∴T≥2n-2,即[g(x+1)]n-g(xn+1)≥2n-2.…(14分)
证法2:下面用数学归纳法证明不等式(x+
1
x
)n-(xn+
1
xn
)
≥2n-2.
①当n=1时,左边=(x+
1
x
)-(x+
1
x
)=0
,右边=21-2=0,不等式成立;
…(10分)
②假设当n=k(k∈N*)时,不等式成立,即(x+
1
x
)
k
-(xk+
1
xk
)
≥2k-2,
则 (x+
1
x
)k+1-(xk+1+
1
xk+1
)
=(x+
1
x
)[(x+
1
x
)
k
-(xk+
1
xk
)]+(x+
1
x
)(xk+
1
xk
)-(xk+1+
1
xk+1
)
=(x+
1
x
)[(x+
1
x
)
k
-(xk+
1
xk
)]+
(xk-1+
1
xk-1
)
…(11分)
≥2
x•
1
x
•(2k-2)+2
xk-1
1
xk-1
=2k+1-2.…(13分)
也就是说,当n=k+1时,不等式也成立.
由①②可得,对?n∈N*,[g(x+1)]n-g(xn+1)≥2n-2都成立.…(14分)
点评:本小题主要考查二次函数、一元二次不等式、一元二次方程、函数应用、均值不等式等基础知识,考查数形结合、函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网