题目内容
已知f(x)=(x-1)2,g(x)=10(x-1),数列{an}满足a1=2,(an+1-an)g(an)+f(an)=0,bn=(n+2)(an-1).
(Ⅰ)求证:数列{an-1}是等比数列;
(Ⅱ)当n取何值时,bn取最大值,并求出最大值;
(Ⅲ)若<对任意m∈N*恒成立,求实数t的取值范围.
答案:
练习册系列答案
相关题目
题目内容
已知f(x)=(x-1)2,g(x)=10(x-1),数列{an}满足a1=2,(an+1-an)g(an)+f(an)=0,bn=(n+2)(an-1).
(Ⅰ)求证:数列{an-1}是等比数列;
(Ⅱ)当n取何值时,bn取最大值,并求出最大值;
(Ⅲ)若<对任意m∈N*恒成立,求实数t的取值范围.