题目内容
【题目】如图,已知与分别是边长为1与2的正三角形, ,四边形为直角梯形,且, ,点为的重心, 为中点, 平面, 为线段上靠近点的三等分点.
(Ⅰ)求证: 平面;
(Ⅱ)若二面角的余弦值为,试求异面直线与所成角的余弦值.
【答案】(Ⅰ)见解析;(Ⅱ).
【解析】试题分析:⑴连延长交于,推导出,又为中点,所以,又,所以,从而证明平面;
⑵为原点, 为轴, 为轴, 为轴建立空间直角坐标系,利用向量法能求出异面直线与所成角的余弦值
解析:(Ⅰ)解:在中,连延长交于,因为点为的重心
所以,且为中点,又,
所以,所以;
又为中点,所以,又,
所以,所以四点共面
又平面, 平面
所以平面
(Ⅱ)由题意, 平面,所以,平面平面,且交线为,
因为,所以平面,
又四边形为直角梯形, , ,所以,所以平面
因为, ,所以平面平面,
又与分别是边长为1与2的正三角形,
故以为原点, 为轴, 为轴, 为轴建立空间直角坐标系,
设,则, , , , , ,
因为
所以, ,
设平面的法向量,则,取,
平面的法向量,
所以二面角的余弦值 ,
,又,
直线与所成角的余弦值为.
【题目】某公司为了了解2018年当地居民网购消费情况,随机抽取了100人,对其2018年全年网购消费金额(单位:千元)进行了统计,所统计的金额均在区间内,并按,,…,6组,制成如图所示的频率分布直方图.
(1)求图中的值;
(2)若将全年网购消费金额在20千元及以上者称为网购迷.结合图表数据,补全列联表,并判断是否有的把握认为样本数据中的网购迷与性别有关系?说明理由;
男 | 女 | 合计 | |
网购迷 | 20 | ||
非网购迷 | 45 | ||
合计 |
下面的临界值表仅供参考:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
附: .
【题目】某地4个蔬菜大棚顶部,阳光照在一棵棵茁壮生长的蔬菜上,这些采用水培、无土栽培方式种植的各类蔬菜,成为该地区居民争相购买的对象,过去50周的资料显示,该地周光照量(小时)都在30以上,其中不足50的周数大约5周,不低于50且不超过70的周数大约有35周,超过70的大约有10周,根据统计某种改良黄瓜每个蔬菜大棚增加量(百斤)与每个蔬菜大棚使用农夫1号液体肥料(千克)之间对应数据为如图所示的折线图.
(1)依据数据的折线图,用最小二乘法求出关于的线性回归方程;并根据所求线性回归方程,估计如果每个蔬菜大棚使用农夫1号肥料10千克,则这种改良黄瓜每个蔬菜大鹏增加量是多少斤?
(2)因蔬菜大棚对光照要求较大,某光照控制仪商家为应对恶劣天气对光照的影响,为该基地提供了部分光照控制仪,该商家希望安装的光照控制仪尽可能运行,但每周光照控制仪最多可运行台数受周光照量限制,并有如下关系:
周光照量(单位:小时) | 30<X<50 | ||
光照控制仪最多可运行台数 | 3 | 2 | 1 |
若某台光照控制仪运行,则该台光照仪周利润为4000元;若某台光照仪未运行,则该台光照仪周亏损500元,欲使商家周总利润的均值达到最大,应安装光照控制仪多少台?
附:回归方程系数公式: , .