题目内容
【题目】如图,棱柱ABC﹣A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B
(1)证明:平面AB1C⊥平面A1BC1;
(2)设D是A1C1上的点,且A1B∥平面B1CD,求A1D:DC1的值.
【答案】
(1)证明:因为侧面BCC1B1是菱形,所以B1C⊥BC1
又已知B1C⊥A1B,且A1B∩BC1=B,
又B1C⊥平面A1BC1,又B1C平面AB1C,
所以平面AB1C⊥平面A1BC1.
(2)解:设BC1交B1C于点E,连接DE,
则DE是平面A1BC1与平面B1CD的交线,
因为A1B∥平面B1CD,所以A1B∥DE.
又E是BC1的中点,所以D为A1C1的中点.
即A1D:DC1=1.
【解析】(1)证明平面AB1C内的直线B1C垂直平面A1BC1 , 内的两条相交直线A1B,BC1 , 即可证明平面AB1C⊥平面A1BC1;(2)D是A1C1上的点,且A1B∥平面B1CD,BC1交B1C于点E,连接DE,E是BC1的中点,推出D为A1C1的中点,可得A1D:DC1的值.
【考点精析】认真审题,首先需要了解直线与平面平行的性质(一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行;简记为:线面平行则线线平行),还要掌握平面与平面垂直的判定(一个平面过另一个平面的垂线,则这两个平面垂直)的相关知识才是答题的关键.
【题目】随着人口老龄化的到来,我国的劳动力人口在不断减少,“延迟退休”已经成为人们越来越关注的话题,为了解公众对“延迟退休”的态度,某校课外研究性学习小组在某社区随机抽取了50人进行调查,将调查情况进行整理后制成下表:
年龄 | [20,25) | [25,30) | [30,35) | [35,40) | [40,45) |
人数 | 4 | 5 | 8 | 5 | 3 |
年龄 | [45,50) | [50,55) | [55,60) | [60,65) | [65,70) |
人数 | 6 | 7 | 3 | 5 | 4 |
经调查年龄在[25,30),[55,60)的被调查者中赞成“延迟退休”的人数分别是3人和2人.现从这两组的被调查者中各随机选取2人,进行跟踪调查.
(I)求年龄在[25,30)的被调查者中选取的2人都赞成“延迟退休”的概率;
(II)若选中的4人中,不赞成“延迟退休”的人数为,求随机变量的分布列和数学期望.