题目内容

已知函数

(1)若函数在其定义域内为单调递增函数,求实数的取值范围。

(2)若函数,若在[1,e]上至少存在一个x的值使成立,求实数的取值范围。

【解析】第一问中,利用导数,因为在其定义域内的单调递增函数,所以 内满足恒成立,得到结论第二问中,在[1,e]上至少存在一个x的值使成立,等价于不等式 在[1,e]上有解,转换为不等式有解来解答即可。

解:(1)

因为在其定义域内的单调递增函数,

所以 内满足恒成立,即恒成立,

亦即

即可  又

当且仅当,即x=1时取等号,

在其定义域内为单调增函数的实数k的取值范围是.

(2)在[1,e]上至少存在一个x的值使成立,等价于不等式 在[1,e]上有解,设

 上的增函数,依题意需

实数k的取值范围是

 

【答案】

(1)         (2)实数k的取值范围是.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网