题目内容
已知函数;
(1)若函数在其定义域内为单调递增函数,求实数
的取值范围。
(2)若函数,若在[1,e]上至少存在一个x的值使
成立,求实数
的取值范围。
【解析】第一问中,利用导数,因为
在其定义域内的单调递增函数,所以
内满足
恒成立,得到结论第二问中,在[1,e]上至少存在一个x的值使
成立,等价于不等式
在[1,e]上有解,转换为不等式有解来解答即可。
解:(1),
因为在其定义域内的单调递增函数,
所以 内满足
恒成立,即
恒成立,
亦即,
即可 又
当且仅当,即x=1时取等号,
在其定义域内为单调增函数的实数k的取值范围是
.
(2)在[1,e]上至少存在一个x的值使成立,等价于不等式
在[1,e]上有解,设
上的增函数,
依题意需
实数k的取值范围是
【答案】
(1) (2)实数k的取值范围是
.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目