题目内容
【题目】如图所示,在棱长为1的正方体中,点分别是棱的中点,是侧面内一点,若平面,则线段长度的取值范围是( )
A.B.C.D.
【答案】B
【解析】
分别取棱BB1、B1C1的中点M、N,连接MN,易证平面A1MN∥平面AEF,由题意知点P必在线段MN上,由此可判断P在M或N处时A1P最长,位于线段MN中点处时最短,通过解直角三角形即可.
如图所示:分别取棱BB1、B1C1的中点M、N,连接MN,连接BC1,
∵M、N、E、F为所在棱的中点,∴MN∥BC1,EF∥BC1,
∴MN∥EF,又MN平面AEF,EF平面AEF,∴MN∥平面AEF;
∵AA1∥NE,AA1=NE,∴四边形AENA1为平行四边形,
∴A1N∥AE,又A1N平面AEF,AE平面AEF,∴A1N∥平面AEF,
又A1N∩MN=N,∴平面A1MN∥平面AEF,∵P是侧面BCC1B1内一点,且A1P∥平面AEF,
则P必在线段MN上,在Rt△A1B1M中,,
同理,在Rt△A1B1N中,求得A1N=,∴△A1MN为等腰三角形,
当P在MN中点O时A1P⊥MN,此时A1P最短,P位于M、N处时A1P最长,
,A1M=A1N=,
所以线段A1P长度的取值范围是 .
故选B.
【题目】为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取名学生的成绩进行统计分析,结果如下表:(记成绩不低于分者为“成绩优秀”)
分数 | |||||||
甲班频数 | |||||||
乙班频数 |
(Ⅰ)由以上统计数据填写下面的列联表,并判断是否有以上的把握认为“成绩优秀与教学方式有关”?
甲班 | 乙班 | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
(Ⅱ)现从上述样本“成绩不优秀”的学生中,抽取人进行考核,记“成绩不优秀”的乙班人数为,求的分布列和期望.
参考公式:,其中.
临界值表