题目内容
【题目】如图,已知抛物线的焦点为,椭圆的中心在原点,为其右焦点,点为曲线和在第一象限的交点,且.
(1)求椭圆的标准方程;
(2)设为抛物线上的两个动点,且使得线段的中点在直线上,
为定点,求面积的最大值.
【答案】(1)椭圆的标准方程为; (2)面积的最大值为.
【解析】
试题分析:(1)由已知得,跟据抛物线定义,得,所以点;据椭圆定义,得.
所以椭圆的标准方式是.(2)因为为线段的中点,得直线的方程为;联立,得,由弦长公式和点到直线的距离,得.
再根据函数的单调性得面积的最大值为.
试题解析:(1)设椭圆的方程为,半焦距为.
由已知,点,则.
设点,据抛物线定义,得.由已知,,则.
从而,所以点.
设点为椭圆的左焦点,则,.
据椭圆定义,得,则.
从而,所以椭圆的标准方式是.
(2)设点,,,则.
两式相减,得,即.因为为线段的中点,则.
所以直线的斜率.
从而直线的方程为,即.
联立,得,则.
所以.
设点到直线的距离为,则.
所以.
由,得.令,则.
设,则.
由,得.从而在上是增函数,在上是减函数,
所以,故面积的最大值为.
【题目】2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:
男生测试情况:
抽样情况 | 病残免试 | 不合格 | 合格 | 良好 | 优秀 |
人数 | 5 | 10 | 15 | 47 |
女生测试情况
抽样情况 | 病残免试 | 不合格 | 合格 | 良好 | 优秀 |
人数 | 2 | 3 | 10 | 2 |
(1)现从抽取的1000名且测试等级为“优秀”的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;
(2)若测试等级为“良好”或“优秀”的学生为“体育达人”,其它等级的学生(含病残免试)为“非体育达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为体育达人”与性别有关?
男性 | 女性 | 总计 | |
体育达人 | |||
非体育达人 | |||
总计 |
临界值表:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:( ,其中)