题目内容
设变量x,y满足约束条件
,则目标函数z=5x+y的最大值为( )
|
A、2 | B、3 | C、4 | D、5 |
分析:本题主要考查线性规划的基本知识,先画出约束条件
的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数Z=5x+y的最小值.
|
解答:解:满足约束条件
的可行域如图,
由图象可知:
目标函数z=5x+y过点A(1,0)时
z取得最大值,zmax=5,
故选D.
|
由图象可知:
目标函数z=5x+y过点A(1,0)时
z取得最大值,zmax=5,
故选D.
点评:在解决线性规划的问题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域?②求出可行域各个角点的坐标?③将坐标逐一代入目标函数?④验证,求出最优解.
练习册系列答案
相关题目
设变量x,y满足约束条件
,则目标函数u=x2+y2的最大值M与最小值N的比
=( )
|
M |
N |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|