题目内容
【题目】已知椭圆:
的左焦点为
,其左、右顶点为
、
,椭圆与
轴正半轴的交点为
,
的外接圆的圆心
在直线
上.
(I)求椭圆的方程;
(II)已知直线:
,
是椭圆
上的动点,
,垂足为
,是否存在点
,使得
为等腰三角形?若存在,求出点
的坐标,若不存在,请说明理由.
【答案】(I);(II)
或
.
【解析】
试题分析:(Ⅰ)求出的垂直平分线方程,
的垂直平分线的方程,从而可得
的坐标,利用
在直线
上,结合
,即可求得椭圆
的方程;(Ⅱ)设
,即
,解得
,
(舍去).即可求得点
的坐标.
试题解析:(I)由题意知,圆心既在
的垂直平分线上,也在
的垂直平分线上,
设的坐标为
,则
的垂直平分线方程为
…①
因为的中点坐标为
,
的斜率为
所以的垂直平分线的方程为
…②
联立①②解得: ,
即,
因为在直线
上,所以
………(4分)
即
因为,所以
再由求得
所以椭圆的方程为
………(7分)
(II)若,即
解得,
(显然不符合条件,舍去).
此时所以满足条件的点的坐标为
.
综上,存在点或
,使得
为等腰三角形
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差 | 10 | 11 | 13 | 12 | 8 |
发芽数 | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注: )
【题目】某车间20名工人年龄数据如下表:
年龄(岁) | 19 | 24 | 26 | 30 | 34 | 35 | 40 | 合计 |
工人数(人) | 1 | 3 | 3 | 5 | 4 | 3 | 1 | 20 |
(1)求这20名工人年龄的众数与平均数;
(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.
【题目】某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.
(1)根据茎叶图中的数据完成列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?
购买意愿强 | 购买意愿弱 | 合计 | |
20~40岁 | |||
大于40岁 | |||
合计 |
(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,记抽到的2人中年龄大于40岁的市民人数为,求
的分布列和数学期望.
附:.