题目内容
如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.(Ⅰ)求证AE⊥平面BCE;
(Ⅱ)求二面角B-AC-E的大小;
(Ⅲ)求点D到平面ACE的距离.
分析:(Ⅰ)要证AE⊥平面BCE,只需证明AE垂直平面BCE内的两条相交直线BF、BC即可;
(Ⅱ)连接AC、BD交于G,连接FG,说明∠FGB为二面角B-AC-E的平面角,然后求二面角B-AC-E的大小;
(Ⅲ)利用VD-ACE=VE-ACD,求点D到平面ACE的距离,也可以利用空间直角坐标系,向量的数量积,证明垂直,求出向量的模.
(Ⅱ)连接AC、BD交于G,连接FG,说明∠FGB为二面角B-AC-E的平面角,然后求二面角B-AC-E的大小;
(Ⅲ)利用VD-ACE=VE-ACD,求点D到平面ACE的距离,也可以利用空间直角坐标系,向量的数量积,证明垂直,求出向量的模.
解答:解:(I)∵BF⊥平面ACE,
∴BF⊥AE,
∵二面角D-AB-E为直二面角,
∴平面ABCD⊥平面ABE,又BC⊥AB,∴BC⊥平面ABE,∴BC⊥AE,
又BF?平面BCE,BF∩BC=B,∴AE⊥平面BCE.
(II)连接AC、BD交于G,连接FG,
∵ABCD为正方形,∴BD⊥AC,
∵BF⊥平面ACE,BG⊥AC,?AC⊥平面BFG,
∴FG⊥AC,∠FGB为二面角B-AC-E的平面角,由(I)可知,AE⊥平面BCE,∴AE⊥EB,
又AE=EB,AB=2,AE=BE=
,
在直角三角形BCE中,CE=
=
,BF=
=
=
在正方形中,BG=
,在直角三角形BFG中,sin∠FGB=
=
=
∴二面角B-AC-E为arcsin
.
(III)由(II)可知,在正方形ABCD中,BG=DG,D到平面ACE的距离等于B到平面ACE的距离,BF⊥平面ACE,线段BF的长度就是点B到平面ACE的距离,即为D到平面ACE的距离所以D到平面的距离为
=
.
另法:过点E作EO⊥AB交AB于点O.OE=1.
∵二面角D-AB-E为直二面角,∴EO⊥平面ABCD.
设D到平面ACE的距离为h,
∵VD-ACE=VE-ACD,∴
S△ACB•h=
S△ACD•EO.
∵AE⊥平面BCE,∴AE⊥EC.∴h=
=
=
∴点D到平面ACE的距离为
.
解法二:
(Ⅰ)同解法一.
(Ⅱ)以线段AB的中点为原点O,OE所在直线为x轴,AB所在直线为y轴,
过O点平行于AD的直线为z轴,建立空间直角坐标系O-xyz,如图.
∵AE⊥面BCE,BE?面BCE,∴AE⊥BE,
在Rt△AEB中,AB=2,O为AB的中点,
∴OE=1.∴A(0,-1,0),E(1,0,0),C(0,1,2),
=(1,1,0),
=(0,2,2)
设平面AEC的一个法向量为
=(x,y,z),
则
,即
,
解得
,
令x=1,得
=(1,-1,1)是平面AEC的一个法向量.
又平面BAC的一个法向量为
=(1,0,0),
∴cos(
,
)=
=
=
.
∴二面角B-AC-E的大小为arccos
(III)∵AD∥z轴,AD=2,∴
=(0,0,2),
∴点D到平面ACE的距离d=|
|•|cos<
,
>=
=
=
.
∴BF⊥AE,
∵二面角D-AB-E为直二面角,
∴平面ABCD⊥平面ABE,又BC⊥AB,∴BC⊥平面ABE,∴BC⊥AE,
又BF?平面BCE,BF∩BC=B,∴AE⊥平面BCE.
(II)连接AC、BD交于G,连接FG,
∵ABCD为正方形,∴BD⊥AC,
∵BF⊥平面ACE,BG⊥AC,?AC⊥平面BFG,
∴FG⊥AC,∠FGB为二面角B-AC-E的平面角,由(I)可知,AE⊥平面BCE,∴AE⊥EB,
又AE=EB,AB=2,AE=BE=
2 |
在直角三角形BCE中,CE=
BC2+BE2 |
6 |
BC•BE |
CE |
2
| ||
|
2 | ||
|
在正方形中,BG=
2 |
BF |
BG |
| ||||
|
| ||
3 |
∴二面角B-AC-E为arcsin
| ||
3 |
(III)由(II)可知,在正方形ABCD中,BG=DG,D到平面ACE的距离等于B到平面ACE的距离,BF⊥平面ACE,线段BF的长度就是点B到平面ACE的距离,即为D到平面ACE的距离所以D到平面的距离为
2 | ||
|
2
| ||
3 |
另法:过点E作EO⊥AB交AB于点O.OE=1.
∵二面角D-AB-E为直二面角,∴EO⊥平面ABCD.
设D到平面ACE的距离为h,
∵VD-ACE=VE-ACD,∴
1 |
3 |
1 |
3 |
∵AE⊥平面BCE,∴AE⊥EC.∴h=
| ||
|
| ||||||
|
2
| ||
3 |
∴点D到平面ACE的距离为
2
| ||
3 |
解法二:
(Ⅰ)同解法一.
(Ⅱ)以线段AB的中点为原点O,OE所在直线为x轴,AB所在直线为y轴,
过O点平行于AD的直线为z轴,建立空间直角坐标系O-xyz,如图.
∵AE⊥面BCE,BE?面BCE,∴AE⊥BE,
在Rt△AEB中,AB=2,O为AB的中点,
∴OE=1.∴A(0,-1,0),E(1,0,0),C(0,1,2),
AE |
AC |
设平面AEC的一个法向量为
n |
则
|
|
解得
|
令x=1,得
n |
又平面BAC的一个法向量为
m |
∴cos(
m |
n |
| ||||
|
|
1 | ||
|
| ||
3 |
∴二面角B-AC-E的大小为arccos
| ||
3 |
(III)∵AD∥z轴,AD=2,∴
AD |
∴点D到平面ACE的距离d=|
AD |
AD |
n |
|
| ||||
|
|
2 | ||
|
2 |
3 |
3 |
点评:本题考查直线与平面垂直的判定,二面角的求法,考查空间想象能力,逻辑思维能力,是中档题.
练习册系列答案
相关题目