题目内容
【题目】设双曲线 (a>0,b>0)的左焦点为F1 , 左顶点为A,过F1作x轴的垂线交双曲线于P、Q两点,过P作PM垂直QA于M,过Q作QN垂直PA于N,设PM与QN的交点为B,若B到直线PQ的距离大于a+ ,则该双曲线的离心率取值范围是( )
A.(1﹣ )
B.( ,+∞)
C.(1,2 )
D.(2 ,+∞)
【答案】B
【解析】解:由题意可知:A(﹣a,0),P(﹣c, ),Q(﹣c,﹣ ), 由双曲线的对称性可知B在x轴上,设B(x,0),
则BP⊥AQ,
则kBPkAQ=﹣1,
∴ =﹣1,
则c+x=﹣ ,
由B到直线PQ的距离d=x+c,
∴丨﹣ 丨>a+ ,则 >c2﹣a2=b2 ,
∴ >1,
由椭圆的离心率e= = > ,
双曲线的离心率取值范围( ,+∞),
故选B.
练习册系列答案
相关题目
【题目】随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如表.
非一线 | 一线 | 总计 | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
总计 | 58 | 42 | 100 |
附表:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
由K2= 算得,K2= ≈9.616参照附表,得到的正确结论是( )
A.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”
C.有99%以上的把握认为“生育意愿与城市级别有关”
D.有99%以上的把握认为“生育意愿与城市级别无关”