题目内容

已知函数f(x)的定义域为[-2,+∞),部分对应值如下表.f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示.若实数a满足f(2a+1)<1,则a的取值范围是(  )
x -2 0 4
f(x) 1 -1 1
分析:由导函数的图象得到导函数的符号,利用导函数的符号与函数单调性的关系得到f(x)的单调性,结合函数的单调性,即可求a的取值范围.
解答:解:由导函数的图形知,x∈(-2,0)时,f′(x)<0;x∈(0,+∞)时,f′(x)>0
∴f(x)在(-2,0)上单调递减,在(0,+∞)上单调递增;
∵f(2a+1)<1
∴-2<2a+1<4
-
3
2
<a<
3
2

∴a的取值范围是(-
3
2
3
2
)

故选D.
点评:利用导函数求函数的单调性问题,应该先判断出导函数的符号,当导函数大于0对应函数单调递增;当导函数小于0,对应函数单调递减.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网