题目内容
已知函数f(x)=log3
| ||
1-x |
1 |
2 |
OP |
OM |
ON |
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1 |
n |
2 |
n |
n-1 |
n |
(Ⅲ)已知an=
|
分析:(1)先用
,
表示出
,再由P是MN的中点可得到x1+x2=1,然后代入到y1+y2=f(x1)+f(x2)结合对数的运算法则即可得到y1+y2=1,得证.
(2)先由(Ⅰ)知当x1+x2=1时,y1+y2=1,然后对Sn=f(
)+f(
)++f(
)进行倒叙相加即可得到2Sn=[f(
)+f(
)]+[(
)+f(
)]++[f(
)+f(
)],再结合x1+x2=1时,y1+y2=1可得到Sn=
.
(3)将(2)中的Sn=
.代入到an的表达式中进行整理当n≥2时满足an=
-
.,然后验证当n=1时满足,再代入到Tn中进行求值,当Tn<m(Sn+1+1)对一切n∈N*都成立时可转化为m>
=
=
恒成立,再由均值不等式可求出m的范围.
OM |
ON |
OP |
(2)先由(Ⅰ)知当x1+x2=1时,y1+y2=1,然后对Sn=f(
1 |
n |
2 |
n |
n-1 |
n |
1 |
n |
n-1 |
n |
2 |
n |
n-2 |
n |
n-1 |
n |
1 |
n |
n-1 |
2 |
(3)将(2)中的Sn=
n-1 |
2 |
1 |
n+1 |
1 |
n+2 |
Tn |
Sn+1+1 |
n |
(n+2)2 |
1 | ||
n+
|
解答:解:(1)由已知可得,
=
(
+
),
∴P是MN的中点,有x1+x2=1.
∴y1+y2=f(x1)+f(x2)
=log3
+log3
=log3(
•
)
=log3
=log3
=log3
=1.
(2)解:由(Ⅰ)知当x1+x2=1时,y1+y2=f(x1)+f(x1)=1
Sn=f(
)+f(
)++f(
),
Sn=f(
)++f(
)+f(
),
相加得
2Sn=[f(
)+f(
)]+[(
)+f(
)]++[f(
)+f(
)]
=
=n-1
∴Sn=
.
(3)解:当n≥2时,
an=
=
=
=
-
.
又当n=1时,
a1=
=
-
.
∴an=
-
.
Tn=(
-
)+(
-
)+…+(
-
)=
.
由于Tn<m(Sn+1+1)对一切n∈N*都成立,
m>
=
=
∵n+
≥4,当且仅当n=2时,取“=”,
∴
≤
=
因此m>
.
综上可知,m的取值范围是(
,+∞).
OP |
1 |
2 |
OM |
ON |
∴P是MN的中点,有x1+x2=1.
∴y1+y2=f(x1)+f(x2)
=log3
| ||
1-x1 |
| ||
1-x2 |
=log3(
| ||
1-x1 |
| ||
1-x2 |
=log3
3x1x2 |
(1-x1)(1-x2) |
=log3
3x1x2 |
1-(x1+x2)+x1x2 |
=log3
3x1x2 |
1-1+x1x2 |
(2)解:由(Ⅰ)知当x1+x2=1时,y1+y2=f(x1)+f(x1)=1
Sn=f(
1 |
n |
2 |
n |
n-1 |
n |
Sn=f(
n-1 |
n |
2 |
n |
1 |
n |
相加得
2Sn=[f(
1 |
n |
n-1 |
n |
2 |
n |
n-2 |
n |
n-1 |
n |
1 |
n |
=
| ||
(n-1)个1 |
=n-1
∴Sn=
n-1 |
2 |
(3)解:当n≥2时,
an=
1 |
4(Sn+1)(Sn+1+1) |
1 | ||||
4×
|
1 |
(n+1)(n+2) |
1 |
n+1 |
1 |
n+2 |
又当n=1时,
a1=
1 |
6 |
1 |
2 |
1 |
3 |
∴an=
1 |
n+1 |
1 |
n+2 |
Tn=(
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n+1 |
1 |
n+2 |
n |
2(n+2) |
由于Tn<m(Sn+1+1)对一切n∈N*都成立,
m>
Tn |
Sn+1+1 |
n |
(n+2)2 |
1 | ||
n+
|
∵n+
4 |
n |
∴
1 | ||
n+
|
1 |
4+4 |
1 |
8 |
因此m>
1 |
8 |
综上可知,m的取值范围是(
1 |
8 |
点评:本题主要考查数列求和的倒叙相加法、数列的裂项法和均值不等式的应用.考查对基础知识的综合运用.
练习册系列答案
相关题目