题目内容

(本题满分12分).设进入健身中心的每一位健身者选择甲种健身项目的概率是,选择乙种健身项目的概率是,且选择甲种与选择乙种健身项目相互独立,各位健身者之间选择健身项目是相互独立的。
(Ⅰ)求进入该健身中心的1位健身者选择甲、乙两种项目中的一项的概率;
(Ⅱ)求进入该健身中心的4位健身者中,至少有2位既未选择甲种又未选择乙种健身项目的概率。
0.5,
解:(Ⅰ)记A表示事件:进入该健身中心的1位健身者选择的是甲种项目,B表示事件:进入该健身中心的1位健身者选择的是乙种项目,则事件A与事件B相互独立,P(A)=,P(B)=。―――-1分

故进入该健身中心的1位健身者选择甲、乙两种项目中的一项的概率为:P=P(A)。-――4分
(Ⅱ)记C表示事件:进入该健身中心的1位健身者既未选择甲种又未选择乙种健身项目,D表示事件:进入该健身中心的4位健身者中,至少有2位既未选择甲种又未选择乙种健身项目,A2表示事件:进入该健身中心的4位健身者中恰有2位既未选择甲种又未选择乙种健身项目,A3表示事件:进入该健身中心的4位健身者中恰有3位既未选择甲种又未选择乙种健身项目,A4表示事件:进入该健身中心的4位健身者中恰有4位既未选择甲种又未选择乙种健身项目,―――5分
则P(C)=,―――7分
,―――8分
,―――9分
―――10分
。―――12分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网