题目内容
已知函数f(x)=(
)x-log2x,正实数a,b,c是公差为正数的等差数列,且满足f(a)f(b)f(c)<0.若实数d是方程f(x)=0的一个解,那么下列四个判断:①d<a;②d<b;③d<c;④d>c中有可能成立的个数为( )
1 |
3 |
A.1 | B.2 | C.3 | D.4 |
f(x)在(0,+∞)上单调减,值域为R又a<b<c,f(a)f(b)f(c)<0,所以(1)若f(a),f(b)>0,f(c)<0.由f(d)=0知,a<b<d<c,③成立;(2)若f(a),f(b),f(c)<0.此时d<a<b<c,①②③成立.综上,可能成立的个数为3.
练习册系列答案
相关题目