题目内容

已知抛物线恒经过A(-1,0)、B(1,0)两定点,且以圆x2+y2=4的任一条切线(x=±2除外)为准线,则该抛物线的焦点F的轨迹方程为
 
分析:由题设知,焦点到A和B的距离之和等于A和B分别到准线的距离和.而距离之和为A和B的中点O到准线的距离的二倍,即为2r=4,所以焦点的轨迹方程C是以A和B为焦点的椭圆.由此能求出该抛物线的焦点F的轨迹方程.
解答:解:由题设知,焦点到A和B的距离之和等于A和B分别到准线的距离和.
而距离之和为A和B的中点O到准线的距离的二倍,即为2r=4,
所以焦点的轨迹方程C是以A和B为焦点的椭圆:
其中a为2,c为1.轨迹方程为:
x2
4
+
y2
3
=1(x≠±2).
故答案为:
x2
4
+
y2
3
=1(x≠±2).
点评:本题考查圆锥曲线的性质和应用,解题时要认真审题,仔细求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网