题目内容

(2013•枣庄二模)已知抛物线x2=2py上点(2,2)处的切线经过椭圆E:
y2
a2
+
x2
b2
=1(a>b>0)
的两个顶点.
(1)求椭圆E的方程;
(2)过椭圆E的上顶点A的两条斜率之积为-4的直线与该椭圆交于B,C两点,是否存在一点D,使得直线BC恒过该点?若存在,请求出定点D的坐标;若不存在,请说明理由;
(3)在(2)的条件下,若△ABC的重心为G,当边BC的端点在椭圆E上运动时,求|GA|2+|GB|2+|GC|2的取值范围.
分析:(1)把(2,2)代入抛物线方程x2=2py,即可得到p,即可得到抛物线的方程.利用导数即可得到切线的斜率,利用点斜式即可得到切线方程,即可求出与坐标轴的交点坐标,即可得到a,b.可得椭圆的方程.
(2)假设直线BC恒过定点D,由题意可知直线BC的斜率必存在,故可设直线BC的方程为y=kx+m(m≠2).
设B(x1,y1),C(x2,y2).由(1)知A(0,2).把直线方程与椭圆方程联立可得△>0及根与系数的关系,再利用kAB•kAC=
y1-2
x1
y2-2
x2
即可得出m.进而可得答案.
(3)利用椭圆的性质和三角形的重心性质即可得出.
解答:解:(1)把(2,2)代入抛物线方程x2=2py,得22=2p×2,解得p=1,
∴抛物线的方程为x2=2y;
∴y′=x,∴抛物线x2=2y在点(2,2)处的切线的斜率为y′|x=2=2,
∴抛物线在点(2,2)处的切线方程为y-2=2(x-2),化为y=2x-2.
它与两坐标轴的交点分别为(1,0),(0,-2),由题意可得a=2,b=1.
∴椭圆的方程为
y2
4
+x2=1

(2)假设直线BC恒过定点D,由题意可知直线BC的斜率必存在,故可设直线BC的方程为y=kx+m(m≠2).
设B(x1,y1),C(x2,y2).由(1)知A(0,2).
联立
y=kx+m
y2
4
+x2=1
消去y得到(k2+4)x2+2kmx+m2-4=0,
由△>0,得(2km)2-4(k2+4)(m2-4)>0,化为k2-m2+4>0.
x1+x2=-
2km
k2+4
x1x2=
m2-4
k2+4

∴kAB•kAC=
y1-2
x1
y2-2
x2

=
(kx1+m-2)(kx2+m-2)
x1x2

=
k2x1x2+k(m-2)(x1+x2)+(m-2)2
x1x2

=
k2(m2-4)
k2+4
-
2k2m(m-2)
k2+4
+(m-2)2
m2-4
k2+4

=
k2(m2-4)-2k2m(m-2)+(k2+4)(m-2)2
m2-4

=
k2(m+2)-2k2m+(k2+4)(m-2)
m+2
=
4(m-2)
m+2

由题意可得
4(m-2)
m+2
=-4
,解得m=0,满足△>0.
∴直线BC的方程为y=kx,直线BC恒过定点D(0,0).
(3)由(2)可知:原点(0,0)在直线BC上,
由椭圆的对称性可知AO为△ABC的边BC上的中线,由|AG|=2|GO|和A(0,2),得G点的坐标为(0,
2
3
)

|GA|2=(2-
2
3
)2=
16
9

∴|GA|2+|GB|2+|GC|2=
16
9
+
x
2
1
+(y1-
2
3
)2
+
x
2
2
+(y2-
2
3
)2
=
8
3
+
2
x
2
2
+2
y
2
2
=
8
3
+2
x
2
2
+8(1-
x
2
2
)
=
32
3
-6
x
2
2

不妨设点C在y轴的右侧,则x2∈(0,1].
14
3
32
3
-6
x
2
2
32
3
,即求|GA|2+|GB|2+|GC|2的取值范围是[
14
3
32
3
)
点评:本题综合考查了椭圆、抛物线的标准方程及其性质、直线与圆锥曲线相交问题转化为一元二次方程得根与系数的关系、三角形的重心性质等基础知识及基本技能,考查了推理能力和计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网