题目内容

【题目】把7个字符1,1,1,A,A,α,β排成一排,要求三个“1”两两不相邻,且两个“A“也不相邻,则这样的排法共有(
A.12种
B.30种
C.96种
D.144种

【答案】C
【解析】解:先排列A,A,α,β,若A,B不相邻,有A22C32=6种,若A,B相邻,有A33=6种,共有6+6=12种,
从所形成了5个空中选3个插入1,1,1,共有12C53=120,
若A,A相邻时,从所形成了4个空中选3个插入1,1,1,共有6C43=24,
故三个“1”两两不相邻,且两个“A“也不相邻,则这样的排法共有120﹣24=96种,
故选:C.
先求出两个“A“没有限制的排列,再排除若A,A相邻时的排列,问题得以解决.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网