题目内容

如图所示的四棱锥中,底面为菱形,平面 的中点,

求证:(I)平面; (II)平面⊥平面.

(I)见解析;(II)见解析

解析试题分析:(I)连结于点,可知中点。因为 的中点,由中位线可得,根据线面平行的判定定理可证得平面(II)先证,再证平面⊥平面.
试题解析:证明:(1)连结AC交BD于点O,连结OE.
∵四边形ABCD是菱形,∴AO=CO.
∵E为PC的中点,∴EO∥PA。 ∵PA平面BDE,EO平面BDE,
∴PA∥平面BDE.                          5分
(2)∵PA⊥平面ABCD,BD平面ABCD,∴PA⊥BD,
∵四边形ABCD是菱形,∴BD⊥AC. ∵,∴BD⊥平面PAC,
∵BD平面PBD,∴平面PAC⊥平面PBD.                 10分
考点:线线平行、线面平行,线线垂直、线面垂直。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网