题目内容
从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则试验结束.
(1)求第一次试验恰摸到一个红球和一个白球概率;
(2)记试验次数为,求的分布列及数学期望.
(1)求第一次试验恰摸到一个红球和一个白球概率;
(2)记试验次数为,求的分布列及数学期望.
(1);(2)的分布列为
1 | 2 | 3 | 4 | |
试题分析:(1)由题意知,袋子中共有8个球,记“第一次试验恰摸到一个红球和一个白球”为事件A,则根据古典概型计算公式,得.
(2)由题意知,每次试验中不放回地摸出两个球,直到摸出的球中有红球,因为袋中只有两个红球,所以最多需要进行四次试验,第一次试验的结果可能有“一个红球一个白球”或“两个红球”,第二次试验要在第一次试验没有出红球情况下进行,则袋中剩下4个白球和2个红球,结果可能为“一个红球一个白球”或“两个红球”,同理第三次试验要在前两次没有出现红球下进行,则袋中剩下2个白球和2个红球,结果能为“一个红球一个白球”或“两个红球”,第四次试验要在前三次试验没有出现红球下进行,则袋中只剩下2个红球,结果为“两个红球”,所以的值为1、2、3、4,根据古典概型的计算公式,得,,,,从而可列出的分布列,并求出其数学期望.
试题解析:(1)
(2)由题意可知的值分别为1、2、3、4,则,,,
所以的分布列为
的数学期望.
练习册系列答案
相关题目