题目内容
【题目】华中师大附中中科教处为了研究高一学生对物理和数学的学习是否与性别有关,从高一年级抽取60名同学(男同学30名,女同学30名),给所有同学物理题和数学题各一题,让每位同学自由选择一道题进行解答.选题情况如表:(单位:人)
物理题 | 数学题 | 总计 | |
男同学 | 16 | 14 | 30 |
女同学 | 8 | 22 | 20 |
总计 | 24 | 36 | 60 |
(1)在犯错误的概率不超过1%的条件下,能否判断高一学生对物理和数学的学习与性别有关?
(2)经过多次测试后发现,甲每次解答一道物理题所用的时间为5﹣8分钟,乙每次解答一道物理题所用的时间为6﹣8分钟,现甲、乙解同一道物理题,求甲比乙先解答完的概率;
(3)现从选择做物理题的8名女生中任意选取两人,对他们的解答情况进行全程研究,记甲、乙两女生被抽到的人数为X,求X的分布列和数学期望. 附表及公式:
P(K2k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2= .
【答案】
(1)解:由表中数据得K2= = ≈4.444<6.635,
在犯错误的概率不超过1%的前提下,不能判断高一学生对物理和数学的学习与性质有关.
(2)解:设甲、乙解答一道物理题的时间分别为x,y分钟,
∵甲每次解答一道物理题所用的时间为5﹣8分钟,乙每次解答一道物理题所用的时间为6﹣8分钟,
∴ ,设事件A表示“甲比乙先解答完”,则A表示“x<y”,
作出可行域,如右图:
∴甲比乙先解答完的概率P(A)= = .
(3)解:由题意知在选择物理题的8名女生中任意抽取两人,抽取方法有 =28种,
其中甲、乙两人没有一个人被抽到有 种,恰有一人被抽到有 种,两人都被抽到有 种,
∴X的可能取值为0,1,2,
P(X=0)= ,P(X=1)= ,P(X=2)= ,
∴X的分布列为:
X | 0 | 1 | 2 |
P |
|
|
|
∴E(X)= = .
【解析】(1)由表中数据求出K2≈4.444<6.635,从而得到在犯错误的概率不超过1%的前提下,不能判断高一学生对物理和数学的学习与性质有关.(2)设甲、乙解答一道物理题的时间分别为x,y分钟,由甲每次解答一道物理题所用的时间为5﹣8分钟,乙每次解答一道物理题所用的时间为6﹣8分钟,利用几何概型能求出甲比乙先解答完的概率.(3)由题意知在选择物理题的8名女生中任意抽取两人,抽取方法有 =28种,X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和E(X).
【考点精析】本题主要考查了离散型随机变量及其分布列的相关知识点,需要掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能正确解答此题.
【题目】中国共产党第十九次全国代表大会于2017年10月18日至10月24日在北京召开,会议提出“决胜全面建成小康社会”.某市积极响应开展“脱贫攻坚”,为2020年“全面建成小康社会”贡献力量.为了解该市农村“脱贫攻坚”情况,从某县调查得到农村居民2011年至2017年家庭人均纯收入(单位:百元)的数据如下表:
注:小康的标准是农村居民家庭年人均纯收入达到8000元.
年 份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年人均纯收入y百元 | 41 | 45 | 48 | 56 | 60 | 64 | 71 |
(Ⅰ)求关于的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,预测2020年该县农村居民家庭年人均纯收入指标能否达到“全面建成小康社会”的标准?
附:回归直线斜率和截距的最小二乘估计公式分别为:
,,其中.
【题目】某校夏令营有3名男同学和3名女同学,其年级情况如下表,现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).
一年级 | 二年级 | 三年级 | |
男同学 | |||
女同学 |
(1)用表中字母列举出所有可能的结果;
(2)设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件发生的概率.