题目内容
(本小题满分13分)设函数f(x)=x3+ax2-a2x+m(a>0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在x∈[-1,1]内没有极值点,求a的取值范围;
(Ⅲ)若对任意的a∈[3,6],不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范围.
解:(Ⅰ)∵f′(x)=3x2+2ax-a2=3(x-)(x+a)
又a>0,∴当x<-a或x>时f′(x)>0;
当-a<x<时,f′(x)<0.
∴函数f(x)的单调递增区间为(-∞,-a),(,+∞),
单调递减区间为(-a,).(4分)
(Ⅱ)由题设可知,方程f′(x)=3x2+2ax-a2=0在[-1,1]上没有实根
∴,解得a>3. (8分)
(Ⅲ)∵a∈[3,6],∴由(Ⅰ)知∈[1,2],-a≤-3
又x∈[-2,2]
∴f(x)max=max{f(-2),f(2)}
而f(2)-f(-2)=16-4a2<0
∴f(x)max=f(-2)=-8+4a+2a2+m (10分)又∵f(x)≤1在[-2,2]上恒成立
∴f(x)max≤1即-8+4a+2a2+m≤1
即m≤9-4a-2a2,在a∈[3,6]上恒成立
∵9-4a-2a2的最小值为-87
∴m≤-87. (13分)
解析
练习册系列答案
相关题目