题目内容

【题目】现有正整数构成的数表如下:

第一行:1

第二行:12

第三行:1123

第四行:11211234

第五行:1121123112112345

第k行:先抄写第1行,接着按原序抄写第2行,然后按原序抄写第3行,…,直至按原序抄写第k﹣1行,最后添上数k.(如第四行,先抄写第一行的数1,接着按原序抄写第二行的数1,2,接着按原序抄写第三行的数1,1,2,3,最后添上数4).将按照上述方式写下的第n个数记作(如,…),用表示数表第行的数的个数,求数列{}的前项和=____

【答案】

【解析】

根据题意先求出{}的通项公式,再根据等比数列的求和公式计算即可.

表示数表第行的数的个数,当时,,则

于是,即,又,且,所以,故数列{}的前项和

故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网