题目内容
【题目】[选修4-4:极坐标与参数方程]
在直角坐标系xOy中,直线l的参数方程为 (t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位),且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=4sinθ.
(1)求圆C的直角坐标方程和直线l普通方程;
(2)设圆C与直线l交于点A,B,若点P的坐标为(3,0),求|PA|+|PB|.
【答案】
(1)解:由ρ=4sinθ,得ρ2=4ρsinθ,
从而可得x2+y2=4y,即x2+y2﹣4y=0,
即圆C的直角坐标方程为x2+(y﹣2)2=4,
直线l的普通方程为x+y﹣3=0
(2)解:将l的参数方程代入圆C的直角坐标方程,
得 ,即 .
由于 ,
故可设t1,t2是上述方程的两实根,
∴
又直线l过点P(3,0),
故由上式及t的几何意义得
【解析】(1)利用三种方程的转化方法,求圆C的直角坐标方程和直线l普通方程;(2)将l的参数方程代入圆C的直角坐标方程,利用参数的几何意义,即可求|PA|+|PB|.
【题目】已知过原点的动直线与圆 相交于不同的两点.
(1)求圆的圆心坐标;
(2)求线段的中点的轨迹的方程;
(3)是否存在实数,使得直线 与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.
【题目】目前,学案导学模式已经成为教学中不可或缺的一部分,为了了解学案的合理使用是否对学生的期末复习有着重要的影响,我校随机抽取100名学生,对学习成绩和学案使用程度进行了调查,统计数据如表所示:
善于使用学案 | 不善于使用学案 | 总计 | |
学习成绩优秀 | 40 | ||
学习成绩一般 | 30 | ||
总计 | 100 |
参考公式: ,其中n=a+b+c+d.
参考数据:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
已知随机抽查这100名学生中的一名学生,抽到善于使用学案的学生概率是0.6.
(1)请将上表补充完整(不用写计算过程);
(2)试运用独立性检验的思想方法分析:有多大的把握认为学生的学习成绩与对待学案的使用态度有关?
(3)利用分层抽样的方法从善于使用学案的同学中随机抽取6人,从这6人中抽出3人继续调查,设抽出学习成绩优秀的人数为X,求X的分布列和数学期望.
【题目】某车间为了给贫困山区的孩子们赶制一批爱心电子产品,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下表所示:
零件的个数个 | 2 | 3 | 4 | 5 |
加工的时间 | 3 | 4 |
经统计发现零件个数与加工时间具有线性相关关系.
(1)求出关于的线性回归方程;
(2)试预测加工10个零件需要多少时间.
利用公式:,