题目内容
设函数f(x)=
的图象上两点P1(x1,y1)、P2(x2,y2),若
=
(
+
),且点P的横坐标为
.
(1)求证:P点的纵坐标为定值,并求出这个定值;
(2)求Sn=f(
)+f(
)+A+f(
)+f(
)
(3)记Tn为数列{
}的前n项和,若Tn<a(Sn+1+
)对一切n∈N*都成立,试求a的取值范围.
2x | ||
2x+
|
OP |
1 |
2 |
OP1 |
OP2 |
1 |
2 |
(1)求证:P点的纵坐标为定值,并求出这个定值;
(2)求Sn=f(
1 |
n |
2 |
n |
n-1 |
n |
n |
n |
(3)记Tn为数列{
1 | ||||
(Sn+
|
2 |
分析:(1)由于点在函数图象上,同时满足
=
(
+
),那么利用坐标化简得到结论.
(2)根据f (x1)+f (x2)=y1+y2=1,f (1)=2-
,结合倒序相加法求解得到结论.
(3)根据已知的和式得到
=
=
=4(
-
),裂项求和的数学思想得到证明.
OP |
1 |
2 |
OP1 |
OP2 |
(2)根据f (x1)+f (x2)=y1+y2=1,f (1)=2-
2 |
(3)根据已知的和式得到
1 | ||||
(Sn+
|
1 | ||||
|
4 |
(n+3)(n+4) |
1 |
n+3 |
1 |
n+4 |
解答:解:(1)证:∵
=
(
+
),
∴P是P1P2的中点⇒x1+x2=1------(2分)
∴y1+y2=f(x1)+f(x2)=
+
=
+
=
+
=1.
∴yp=
(y1+y2)=
..-----------------------------(4分)
(2)解:由(1)知x1+x2=1,f (x1)+f (x2)=y1+y2=1,f (1)=2-
,
Sn=f(
)+f(
)+…+f(
)+f(
),
Sn=f(
)+f(
)+…+f(
)+f(
),
相加得 2Sn=f(1)+[f(
)+f(
)]+[f(
)+f(
)]+…+[f(
)+f(
)]+f(1),
=2f(1)+n-1=n+3-2
∴Sn=
.------------(8分)
(3)解:
=
=
=4(
-
),
Tn=4[(
-
)+(
-
)+…+(
-
)]--------------------(10分)
Tn<a(Sn+1+
)?a>
=
=
∵n+
≥8,当且仅当n=4时,取“=”
∴
≤
=
,因此,a>
-------------------(12分)
OP |
1 |
2 |
OP1 |
OP2 |
∴P是P1P2的中点⇒x1+x2=1------(2分)
∴y1+y2=f(x1)+f(x2)=
2x1 | ||
2x1+
|
2x2 | ||
2x2+
|
2x1 | ||
2x1+
|
21-x1 | ||
21-x1+
|
2x1 | ||
2x1+
|
2 | ||
|
∴yp=
1 |
2 |
1 |
2 |
(2)解:由(1)知x1+x2=1,f (x1)+f (x2)=y1+y2=1,f (1)=2-
2 |
Sn=f(
1 |
n |
2 |
n |
n-1 |
n |
n |
n |
Sn=f(
n |
n |
n-1 |
n |
2 |
n |
1 |
n |
相加得 2Sn=f(1)+[f(
1 |
n |
n-1 |
n |
2 |
n |
n-2 |
n |
n-1 |
n |
1 |
n |
=2f(1)+n-1=n+3-2
2 |
∴Sn=
n+3-2
| ||
2 |
(3)解:
1 | ||||
(Sn+
|
1 | ||||
|
4 |
(n+3)(n+4) |
1 |
n+3 |
1 |
n+4 |
Tn=4[(
1 |
4 |
1 |
5 |
1 |
5 |
1 |
6 |
1 |
n+3 |
1 |
n+4 |
Tn<a(Sn+1+
2 |
Tn | ||
Sn+1+
|
2n |
(n+4)2 |
2 | ||
n+
|
∵n+
16 |
n |
∴
2 | ||
n+
|
2 |
8+8 |
1 |
8 |
1 |
8 |
点评:本试题主要考查了函数,与向量,以及数列的知识的综合运用.以函数为模型,确定点的坐标关系式,进一步结合向量得到结论,并利用倒序相加法求解和,同时利用裂项求和得到不等式的证明.
练习册系列答案
相关题目