题目内容

设函数f(x)=
2x
2x+
2
的图象上两点P1(x1,y1)、P2(x2,y2),若
OP
=
1
2
OP1
+
OP2
),且点P的横坐标为
1
2

(1)求证:P点的纵坐标为定值,并求出这个定值;
(2)求Sn=f(
1
n
)+f(
2
n
)+A+f(
n-1
n
)+f(
n
n

(3)记Tn为数列{
1
(Sn+
2
)(Sn+1+
2
)
}的前n项和,若Tn<a(Sn+1+
2
)对一切n∈N*都成立,试求a的取值范围.
分析:(1)由于点在函数图象上,同时满足
OP
=
1
2
OP1
+
OP2
),那么利用坐标化简得到结论.
(2)根据f (x1)+f (x2)=y1+y2=1,f (1)=2-
2
,结合倒序相加法求解得到结论.
(3)根据已知的和式得到
1
(Sn+
2
)(Sn+1+
2
)
=
1
n+3
2
n+4
2
=
4
(n+3)(n+4)
=4(
1
n+3
-
1
n+4
)
,裂项求和的数学思想得到证明.
解答:解:(1)证:∵
OP
=
1
2
OP1
+
OP2
),
∴P是P1P2的中点⇒x1+x2=1------(2分)
∴y1+y2=f(x1)+f(x2)=
2x1
2x1+
2
+
2x2
2x2+
2
=
2x1
2x1+
2
+
21-x1
21-x1+
2
=
2x1
2x1+
2
+
2
2
2x1+2
=1.
yp=
1
2
(y1+y2)
=
1
2
..-----------------------------(4分)
(2)解:由(1)知x1+x2=1,f (x1)+f (x2)=y1+y2=1,f (1)=2-
2

Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(
n
n
),
Sn=f(
n
n
)+f(
n-1
n
)+…+f(
2
n
)+f(
1
n
),
相加得 2Sn=f(1)+[f(
1
n
)+f(
n-1
n
)]+[f(
2
n
)+f(
n-2
n
)]+…+[f(
n-1
n
)+f(
1
n
)]+f(1),
=2f(1)+n-1=n+3-2
2

Sn=
n+3-2
2
2
.------------(8分)
(3)解:
1
(Sn+
2
)(Sn+1+
2
)
=
1
n+3
2
n+4
2
=
4
(n+3)(n+4)
=4(
1
n+3
-
1
n+4
)

Tn=4[(
1
4
-
1
5
)+(
1
5
-
1
6
)+…+(
1
n+3
-
1
n+4
)]
--------------------(10分) 
 Tn<a(Sn+1+
2
)
?a
Tn
Sn+1+
2
=
2n
(n+4)2
=
2
n+
16
n
+8

n+
16
n
≥8,当且仅当n=4时,取“=”
2
n+
16
n
+8
2
8+8
=
1
8
,因此,a
1
8
-------------------(12分)
点评:本试题主要考查了函数,与向量,以及数列的知识的综合运用.以函数为模型,确定点的坐标关系式,进一步结合向量得到结论,并利用倒序相加法求解和,同时利用裂项求和得到不等式的证明.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网