题目内容

(2012•烟台一模)直线l与椭圆
y2
a2
+
x2
b2
=1(a>b>0)
交于A(x1,y1),B(x2,y2)两点,已知
m
=(ax1,by1),
n
=(ax2,by2),若
m
n
且椭圆的离心率e=
3
2
,又椭圆经过点(
3
2
,1)
,O为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线l过椭圆的焦点F(0,c)(c为半焦距),求直线l的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
分析:(Ⅰ)利用椭圆的离心率e=
3
2
,椭圆经过点(
3
2
,1)
,建立方程组,求得几何量,从而可得椭圆的方程;
(Ⅱ)设l的方程,代入椭圆方程,利用韦达定理,结合
m
n
=0可得方程,从而可求直线l的斜率k的值;
(Ⅲ)分类讨论:①当直线AB斜率不存在时,即x1=x2,y1=-y2,利用
m
n
=0,A在椭圆上,可求△AOB的面积;②当直线AB斜率存在时,设AB的方程为y=kx+t,代入椭圆方程,利用韦达定理,结合
m
n
=0可得△AOB的面积是定值.
解答:解:(Ⅰ)∵椭圆的离心率e=
3
2
,椭圆经过点(
3
2
,1)
,∴
e=
c
a
=
a2-b2
a
=
3
2
1
a2
+
3
4b2
=1
…2分
∴a=2,b=1
∴椭圆的方程为
y2
4
+x2=1
…3分
(Ⅱ)依题意,设l的方程为y=kx+
3

y=kx+
3
y2
4
+x2=1
,∴(k2+4)x2+2
3
kx-1=0

显然△>0,x1+x2=
-2
3k
k2+4
x1x2=
-1
k2+4
…5分
由已知
m
n
=0得:a2x1x2+b2y1y2=4x1x2+(kx1+
3
)(kx2+
3
)
=(4+k2)x1x2+
3
k(x1+x2)+3
=(k2+4)(-
1
k2+4
)+
3
k•
-2
3
k
k2+4
+3=0

解得k=±
2
…6分.
(Ⅲ)①当直线AB斜率不存在时,即x1=x2,y1=-y2
m
n
=0,∴4
x
2
1
-
y
2
1
=0

∵A在椭圆上,∴
4x12
4
+x12=1
,∴|x1|=
2
2
,|y1|=
2

∴S=
1
2
|x1||y1-y2|
=1;
②当直线AB斜率存在时,设AB的方程为y=kx+t,代入椭圆方程,可得(k2+4)x2+2ktx+t2-4=0
△=4k2t2-4(k2+4)(t2-4)>0,x1+x2=
-2kt
k2+4
,x1x2=
t2-4
k2+4

m
n
=0,∴4x1x2+y1y2=0,∴4x1x2+(kx1+t)(kx2+t)=0
∴2t2-k2=4
S=
1
2
×
|t|
1+k2
|AB|=
|t|
4k2-4t2+16
k2+4
=
4t2
2|t|
=1
综上,△AOB的面积是定值1.
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查三角形面积的计算,解题的关键是联立方程,利用韦达定理进行求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网